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USER'S GUIDE FOR SAMUEL, VERSION 1.3

CHAPTER 1

INTRODUCTION

This document is the User's Manual for the SAMUEL system. SAMUEL stands for StrategN
Acquisition Method Using Empirical Learning. 1

PURPOSE OF THE SAMUEL SYSTEM

SAMUEL learns condition-action rules from a computer simulation of a problem domain.
For example, the problem specific module accompanying this distribution models the Evasive
Maneuvers (EM) problem. hi this 2-dimensional computer simulation of air combat, SAMUEL
learns rules for controlling the turning rate of a plane so the plane avoids being hit by an
approaching missile. SAMUEL cao learn the condition-action rules for a variety of problems. In
general, SAMUEL can learn seque.itial decision rules for any problem rmain where the overail
evaluation of the decisions occurs at the end of the sequence.

IMPLEMENTATION LANGUAGE OF SAMUEL

SAMUEL is written in the C programming language. The makefile accompanying the
distribution has compilation flags for the Sun3, the Sun4 SPARCSTATION, and the Butterfly's
Mach Uniform System. Users of other systems may need to tailer the C code to suit their own
environments.

OBJECTIVES OF THE MANUAL

This manual is intended primarily for researchers and application developers. B\
examining the application of SAMUEL to the EM problem domain, we illustrate how a user might
apply SAMUEL to other problems. The manual does not explicitly address how to make
modifications to SAMUEL that extend beyond the problem domain modules. However, the
manual does provide an overall description of the system that would be useful background
reading to users who intend to make substantial modifications to SAMUEL. For additional
information on SAMUEL, the user should consult the Reference section of this manual.

1The name also honors Art Samuel, one of the pioneers in machine learning.

Manuscript approved February 8. 1991
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USE OF SAMUEL
The SAMUEL system and its accompanying documentation are the property of the

Department of the Navy. This system is to be used for official Department of Navy purpoves
only. The use of the SAMUEL system is governed by a formal Memorandum of Agreement
between the Navy Center for Applied Research in Artificial Intelligence (NCARAI) and the
user's transition site. Researchers and application developers who make use of SA-MUEL in their
research products or application products should credit the program author, John J. Grefenstette.
and the Naval Research Laboratory.

The author of SAMUEL and the authors of its accompanying documentation do not
guarantee the program code or the SAMUEL User's Guide to be error free or appropriate for any
particular purpose. To report any problems, see the Program Maintenance and Support section
of this manual.

ORGANIZATION OF THE MANUAL
The rest of this manual is crganized as follows. Chapter 2 provides a tser with a quick

overview of the system. Chapters 3 through 6 expand on Chapter 2, giving a review of the
system's knowledge structures and architecture. In addition to discussing the Problem Specific
Module in general, Chapter 6 also outlines the essential procedures, functions, and variables for
develcping a world model (of a problem domain) to interface with SAMUEL's Perfornmir:
Module. Chapter 7 introduces a user in a hands-on fashion to SAMUEL. This chapter includes i
demonstration of SAMUEL's display output and a simple example experiment using the EM
enviionment. Chapter 8 gives program support information. The appendices summarize more
detailed information. Appendices A through C describe information pertaining to input files
used by SAMUEL: Appendix A lists SAMUEL's input parameters; Appendix B describes the
syntax used for defining sensors and controls in the world model, and Appendix C illustrates the
syntax of rules that can optionally be read into SAMUEL during program initialization. Appendix
D gives implementation details of SAMUEL, listing by file the procedures, functions, and
variables of the system.

A user should read the chapters of this manual in their order of presentation. Iloever,
reading about how to interface a user's domain model to SAMUEL is not essential to gainirng
familiarity with the system (Chapter 7).

This manual uses certain conventions of presentation. Key concepts presented in the
manual are placed initially in italics for emphasis. Operator names used in the Learning Module
are always in italics. Actual parameters, procedures, functions, variables, and file names are in
h,-,d type-
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CHAPTER 2

SYSTEM OVERVIEW

Figure 1 shows the architecture of the SAMUEL system. SAMUEL consists of a Performan:e
Module, a Learning Module, and a Problem Specific Module.

PROBLEM SPECIFIC PERFORMANCE
MODULE MODULE

SENSORS M---~~ ATCHING

WORLD CONTROLS CONFLICT / CURRENT
MODEL -RESOLUTION - PLAN

CRITIC CREDIT
CRITIC ] ASSIGNMENT

PLAN
FITNESS RULE

CURRErd STRE NGTHS
8EST _____ COMPETING GENETIC ,

CU3--T PLANS ALGOR'THM

PLAN

LEARNING
MODULE

Figure 1. Architecture of the SAMUEL System

KNOWLEDGE REPRESENTATION

SAMNUEL uses three primary knowledge structures within these modules: a popu/atii.
plans, and rules. The Learning Module examines population of plans that changes over time: Ole
population consists of a set of plans; each plan consists of a set of rules. Each generation of the
genetic algorithm, the Learning Module searches for the best performing members among a
population of plans. To accomplish the search, the Performance Module, in conjunction with the
Problem Specific Module, evaluates the performance of each plan. Plans describe strategies for
interacting with the world in terms of condition-action rules. Depending on the world's state, the
Performance Module selects a rule from the current plan that specifies the control actions to be
applied in the world model of the Problem Specific Module.
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PERFORMANCE MODULE

The Performance Module is a Competition-based Production System (CPS) that interact
with both the world model through the Problem Specific Module interfaces and the GenctiC
Algorithm (GA) of the Learning Module. The CPS module has three major functions: matchimze.
conflict resolution, and credit assignment. The CPS's matching and conflict resolution function
essentially perform the match/resolve-conflicts/act cycle of the traditional production svsterv.
cycle. The Problem Specific Module carries out the action selected by the CPS. DurinL
matching, the CPS examines each rule of a plan and determines the degree of match between the
conditions of a rule and the currendy sensed world values. During conflict resolution, the CPS
first selects an action-value among those recommended by a set of highly matching rules based
on rule strengths and then communicates this value to the Problem Specific Module. If there is
more than one control action, the CPS selects, in a similar manner, a value for each of the other
control actions, The production cycle repeats until the completion of an episode in the Problem
Specific Module. The CPS next executes the credit assignment function, adjusting the relative
strengths of rules in the current plan based or, rule performance of during the episode. The CPS
repeats the execution of its three major functions for a number of episodes to obtain an avtcra , t
payoff. Finally, the CPS communicates the average payoff of the current plan to the Learnirn
Module.

PROBLEM SPECIFIC MODULE

The Problem Specific Module consists of a world model simulation and the critic', sO'Scr.
and control interfaces. The sensor interface communicates the world's current conditions to the
Performance Module's matching function. In turn, the Performance Module's conflict reso!:,t,?:
function communicates the currently selected values of the actions to the control irtezrfcc
Given the environmental state and the selected values of the control actions, the world model
computes the next time step's environmental state. Under conditions determined by the world
model, the tpisude eiiu',. As a result, the rritic communicates its evaliiition of the nlan, called
payoff, to the Performance Module. Between episodes, the Problem Specitic Nodule
reinitializes the world state to one of the possible initial conditions described in the problem
definition.

LEARNING MODULE

The Learning Module, based on the standard GA of the GENESIS package (Grefenstette.
1983), incorporates additional learning heuristics over the standard GA. The GA develops high
performance reactive strategies called plans through the competition of plans within a
population. Every generation, the Learning Module sends each of its competing plans to the
Performance Module for evaluation. The Performance Module returns the average payoff of each
plan. The GA determines the fitness of a plan by scaling this average payoff to a basclint
performance. Based on the fitness evaluations of the competing plans, the GA then chooses
relatively high performing plans for reproduction using the select operator. The GA applies
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genetic operators such as crossover and mutation to copies of these selected plans to prod,,c
plausible new plans for the next generation. The GA's generational cycle repeats until one of tIn
user-specified -topping criteria is satisfied. Depending on options specified by a user. th.:
Learning Module might periodically save the curre.:. best -!2n and ether siliatistics.

EVALUATION LOOPS IN SAMUEL

There are four nested evaluation loops in SAMUEL: experiments, generations. tr !s
episodes. A user typically evaluates SAMUEL for a number of repetitions called expcrircr;nc, i:
order to obtain a statistical estimate of SAMUEL's performance in solving a problem. Th-
evaluation of all members in the GA's population corresponds to a generation. Each generatio:.
the GA evaluates a population in order to breed potentially ber:zr performing plans for the ne,'
generation. The evaluation of each population member corresponds to a trial. Each trial. the

CPS evaluates a plan by measuring the plan's average performance over a number of episodez.
(The trial counter continues without minitialization after each generation.) An episold i t,
decision sequence for accomplishing a domain task. During an episode, the CPS also e'alua:c.
the rules of a plan by distributing the payoff received from the world model's critic function ov-r
the active rules used in the decision process. (Each episode lasts for a number of decisia:; .,a:c

However, there is no evaluation associated with a single decision step.)

LEVELS OF LEARNING IN SAMUEL

Learning in SAMUEL occurs at two distinct levels: credit assignment at the rule leel. :-14
genetic competition at the plan level.

The CPS, through credit assignment, adjusts the relative strengths of rules within a pla:
usilig tLe payff of an episode. The strength of a rule serves as a prediction of the expected levC'
of payoff that would be achieved when the rule fires. Thus, the CPS learns ,ulcS that are mcrno
likely to result in episodes yielding high payoff.

Tiese p,"~ff values also nrovid" the hais for evaluating a plan's performance in
Learning Module. The GA computes each plan's fitness based on its average payoff. ,this it:.-,,
value provides an estimate of the plan's relative competitiveness with respect to other plan, r
the population. As a result, SAMUEL learns plans that yield -verali high performances as eli ,a,
the rules in those plans that yield high payoff.
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CHAPTER 3

KNOWLEDGE REPRESENTATION

As stated in the Introduction, there are three knowledge structures in S,,LLL: tt:.

population, the plans making up the population, and the rules defining each plan.

POPULATION

Throughout a program run, the population consists of a fixed number of plans. All pii.m'
within the population are initially the same.

PLAN

A plan consists of three parts: (1) a rule set, (2) the associated properties describing tg
plan and its history, and (3) a vector of operator probabilities. The GA uses these assoc':ueu
properties and the vector of operator probabilities in its generational cycle.

The Rule Set

A plan has a variable number of rules. Initially, a plan may have one or mans ruic"
depending on the initialization options the user chooses. During ?rogram execution, the ;.A
operators of the Learning Module generate new rules for plans based on the plan's expenence iTI

interacting with the Problem Specific Module. (If the delete operator is active, the GA rnw

occasionally remove a rule from a plan.)

Associated Properties

value

The CPS evaluates a plan by finding the average payoff of the plan over a numbcr ,
episodes. The value property stores this average payoff.

fit ness

The GA computes the fitness property of a plan using the plan's value property and the
baseline performance of the current generation. The fitness property stores the plan's tne:.
value.

offspring

The offspring property saves the expected number of offspring the plan can expecIt kV creih
This expected number is based on the average fitness of the population's plans.
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length

The length property indicates the current number of rules in the plan.

gen

The gen property indicates the generation the plan was created.

trial
The trial property indicates the trial ihe plan was created.

parentl and parent2
The parentl and parent2 properties record the identification numbers of the part;r.,

Vector of Operator Probabilities
The operator probability vector holds the protnability of applying each of th (.

Table 1 lists the order of the operators in the vector.

Index Operator Probability
No operator.

1 I mutate
2 crossover
3 specialize
4 generalize
5 creep
6 delete
7 merge

Table 1. Vector Operator Probabilities

The mutate probability is the probability of mutating a plan: there is a separate proh.:r::.
mutating a rule.

RULES

Each rule has two parts: (1) a condition-actioz production, and (2) the as.\a:
properties of the rule. For example, Rule 10 mighi be

.7.
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Rule 10

if (and (range 250 1000) (speed 500 1200))
then (and (turn 0 90))
parent 0 created 0 fixed I matched 0 partially-matched 0
action I bid 0 active 0 fired 0 mean 500 var 0 strength 500 act 0.5 bias 0

The associated properties list records the rule's history, and for each control action, the statistics
that reflect the ruje's relative competitiveness. The CPS uses these associated properties in its
production cycle.

Condition-Action Production

Each condition-action production has the form

if (andc 1  ".- c,)
then (anda 1  "'" am)

where each ci i a condition, and each ai is an action. For example. a condition-action
production might be

if (and (range 250 1000) (speed 500 1200))
then (and (turn 0 90))

Conditions and actions are defined in terms of attributes. There are two kinds of attributes:
sensors and controls. Each ci in a rule specifies a condition on one of the sensors: each a,
specifies the settings for one of the controls, For example, the "range" and "speed" conditions in
the rule above are sensor attributes. The "turn" action is a co-trol attribute. An attribute has
three components:

1. name,

2. type, and

3 range of values.

Conditions and actions together comprise the atomic formulas, or atoms, of the production
rules in SAMUEL. For example,

(range 250 1000)

is an atom in the example above. The syntax of an atom depends on the attribute's type.

Name Component

The names of the sensors and controls describe their functions in the world model. A user
must define control and sensor variables as part of specifying the world model. In the example

-8-



above, the name of the first sensor attribute is "range."

Types of Attributes and Their Range of Values

SAMUEL supports four types of attributes: linear, cyclic, structured, and pattern Both
sensor and control attributes can have types linear, cyclic, and structured. Currently, the pattern
type only applies to sensor attributes. A usci defines the attributes associated with each sensor
and control variable in the attributes file. Appendix B describes the attributes file in more
detail. A brief description of each kind of attribute follows.

Linear
Linear attributes take on linearly ordered numeric values from a fixed range of values. In

addition to the name, the atom of a linear attribute specifies the attribute's upper and lower
bounds. The user can divide the range up to a maximum of 255 segments. The number of
segments determines the resolution of the sensor or control. The endpoints of each segment
constitute the legal bounds in the atoms.

For example, the "range" condition in the rule above has a type = linear. Suppose the low
and high values for "range" are 0 and 1000, respectively, and the number ot segments
partitioning "range" is 20. Another possible atom for "range" might be

(range 100 250)

A match of the "range" condition occurs when 100 < range S 250.

The "turn" action in the rule above also has an attribute of type = linear. Should the ranz'e
and speed sensors match the conditions in the rule's "range" and "speed" atoms, then the turn
control would take on some value between 0 and 90.

Cyclic

Cyclic attributes take on cyclically ordered numeric values. Like linear attributes, cyclic
attributes have equally divided segments whose endpoints constitute the legal bounds in the
atoms. Unlike linear attributes, any pair of legal values form the bounds of a valid cyclic atom.
For example, suppose a cyclic heading sensor describes a vehicle's direction. If the atom is

(heading 330 90)

then a match of this "heading" condition occurs when the heading sensor has a value in either of
two ranges: 330 _ heading < 360 or 0 <heading< 90.

Structured

Nominal attributes take on values from the nodes of a tree-structured hierarchy. The atom
of structured attribute contains a list of these nodes. For example, a sensor called weather may
take on values from the following hierarchy:

-9-



any

dry wet

sunny cloudy rain snow

An atom for the "weather" condition might be

(weather is [cloudy wet])

This list implies all the subnodes of the nodes listed. A match occurs in this example when the
weather sensor is "cloudy", "wet", "rain", or "snow." A structured attribute can have at most 64
nodes in its hierarchy. The label of a node can have a maximum string length of 16 characters.

Pattern

Pattern attributes take on string values, or patterns, from the alphabet (0, 1, #1 as in
classifier systems (Holland, 1986). For example, the sensor detector] might be defined as an
eight bit string. A possible atom for the "detectorl" condition in a rule might be

(detectorl 00##10#1)

A match occurs when all positions of the detector] sensor match the positions occupied by
0 and 1 in the atom's pattern.

Associated Properties

There are many associated properties of a rule. Parent, created, and fixed are properties
pertaining to the GA that describe the rule's history. Matched and partially-matched are
properties pertaining to the CPS that indicate how often the rule's conditions match sensor
values.

The remaining properties, except for bias, pertain to the CPS's Profit Sharing Plan (PSP).
The bid, active and fired properties are count statistics reflecting the degree of a rule's
participation in the rule competition. The mean, var, and strength properties reflect the payoff
associated with the rule's use. The act property indicates the level of a rule's use over time.

The bias property pertains to the CPS's Bucket Brigade Algorithm (BBA). The BBA is not
included in this version of SAMUEL. A user should ignore the bias property.

- 10-
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parent

The parent property stores the identification number of the predecessor rule. For example.
if SAMUEL creates Rule 12 by mutating Rule 10, then parent = 10.

created

The created property is the concatenation of a rule's generation time with a code indicating
how SAMUEL created the rule. For example, if created = 321, then SAMUEL created the rule
during generation 32 using the mutation operator (code 1). Codes for the operators are as
follows: (1) mutation, (2) crossover, (3) specialize, (4) generalize, (5) creep, (6) delete, and (7)
merge. See Chapter 5 for a discussion of the GA's learning operators.

fixed

The fixed property is a flag indicating that SAMUEL will not subject the rule to the GA
operators that form new replacement rules by modifying existing rules (i.e., the mutation and
creep operators). The fixed property provides a mechanism for inserting default rules into
SAMUEL. that remain unchanged by the GA. A user may initialize a rule to be fixed during
program input. See the Appendix A for more details on the params file.

matched

The matched property is the number of times since the rule's creation that the rule's
conditions have completely matched sensor readings. Completely matching rules are always

included in the match set. See Chapter 4 for a discussion of matching and match sets.

partially-matched

Rules that partially-match have conditions that match some, but not all, of the current
sensor readings. If there are no completely matching rules, then the match set consists of the
best partially-matching rules. The partially-matched property indicates the number of times the
rule has been a member of the match set as a partially-matched rule.

bid

The match set may have rules indicating several competing values for a control action.
Each of these values bids to be selected. The bid property indicates the number of times that the
value of a control action bids to be selected since its creation. See Chapter 4 for a discussion of

action bidding.
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active

If the value of a control action wins a bid, then all rules in the match set having that value
for the control action are active. The active property indicates the number of times the rule has
been active since its creation. See Chapter 4 discussion of rule firing.

fired

The fired property indicates the number of times the rule has won the bidding process since
its creation.

mean
The mean property saves the time-averaged mean of the rule strengths. See Chapter 4 for a

discussion on updating rule strengths.

var

The var property saves the time-averaged variance of the rule strengths.

strength

The strength property serves as a prediction of the rule's utility (Grefenstette, 1988). Thus,
rule strengths are used in bidding process for rule firing. Each control action may be represented
by several active rules in the match set. The control action bids the strength of the highest
strength rule having that control action in the match set. See Chapter 4 for a discussion of
updating rule strengths.

act

The act property indicates a rule's recent firing activity level using a metric ranging from 0
to 1. Rules initially have an activity level of 0.5. Each generation, SAMUEL decays the activity
level of all rules by 0.95. When a rule fires, SAMUEL increases the rule's activity level by setting
t'e activity to 0.1 plus 90 percent of the rule's current activity level. As a result, activity near 1
indicates recent firing of the rule, whereas activity near 0 indicates recent inactivity of the rule.
Rules with low activity are subject to deletion if the delete operator is functioning.

bias

The bias property indicates the relative competitiveness of a rule in the Bucket Brigade
Algorithm. The bias property may be used in future versions of SAMUEL.
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CHAPTER 4

THE PERFORMANCE MODULE: THE PRODUCTION SYSTEM CYCLE

CONDITION MATCHING

Several rules may have conditions that match or partially match the sensor readings.
Partial matching occurs when only some conditions match sensor values. The number of
matching conditions in a rule is the match score. The largest possible match score is equal to the
number of sensors. The CPS places all rules having the highest match score into a match set.
For example, suppose range = 500 and speed = 450. Consider the following three hypothetical
rules:

Rule 62

if (and (range 700 1500) (speed 150 700))
then (and (turn -45 45))
parent 50 created 0 fixed 1 matched 440 partially-matched 440
action 1 bid 497 active 457 fired 289 mean 982 var 13300

strength 866 act 0.5 bias 901

Rule 77

if (and (range 200 1000) (speed 50 550))
then (and (turn 45 90))
parent 10 created 0 fixed 1 matched 3468 partially-matched 253
action I bid 3197 active 1766 fired 1506 mean 994 var 2622

strength 943 act 0.5 bias 952

Rule 100

if (and (range 450 1200) (speed 400 1000))
then (and (turn 90 135))
parent 83 created 0 fixed 1 matched 284 partially-matched 338
action 1 bid 132 active 375 fired 83 mean 971 var21604

strength 824 act 0.5 bias 904

In Rule 62, the "range" condition does not match on the range sensor. In this example, Rules 77
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and 100 form the match set since both the "range" and "speed" conditions match the range and
speed sensors. Suppose, instead, that these three rules had conditions that matched on only one
sensor, i.e., partially matched. Then all of the rules would be placed in the match set. In
general, if some rule matchs m out of n sensors, and no rule matches m + I sensors, then the
match set consists of all rules with match score m.

Associated with each rule in the match set are the values of each control (i.e., action-
values). In the example above, there is only one control action: turn. If the turn control is of
type linear with a range from -180 to 180 quantized into segments of 45 degrees, then the
action-values for the turn control for Rule 77 are 45 and 90. Similarly, the action-values for
Rule 100 are 90 and 135.

CONFLICT RESOLUTION: ACTION BIDDING AND RULE FIRING

The conflict resolution of choosing a rule to fire is based on rule strengths. The action-
values for each control bid to be selected. An action-value's I, i is the strength of the strongest
rule in the match set having that action-value. For example, assume Rules 77 and 100 above
form the match set. In this case, action-value 90 would bid 943, the strength the stronger rule,
Rule 77. However, since action-value 135 only occurs in one rule of the match set (Rule 100),
the bid of action-value 135 is only 824.

Using Monte Carlo techniques, the CPS selects a winning action-value from a probability
distribution formed using these bids. This procedure is unlike classifier systems in which all
members of the match set vote on the action to be performed (Riolo, 1988). Using a distribution
based on strengths of only the strongest rules prevents a large number number of low strength
rules from combining to suggest an action-value that is actually associated with low payoff. All
rules in the match set that have an action-value agreeing with the winner of the bid are said to be
active (Wilson, 1987). The active rule winning the bid is said tofire.

If there is more than one action (i.e., control), SAMUEL assumes each action to be
independent of the others. In other words, SAMUEL repeats the bidding process for each action.
For example, suppose there are two actions. The three hypothetical rules above would have an
additional line for "action 2." It is possible for one rule in the match set to fire the for first
action, and another rule in the match set to fire for the second action. Each of these actions
would have separate strengths associated with them.

CREDIT ASSIGNMENT: UPDATING RULE STRENGTH

The production cycle of match/resolve-conflicts/act repeats until the world model indicates
the end of an episode. At that time, the critic of the Problem Specific Module returns a payoff
value for the episode. The CPS's Profit Sharing Plan (PSP) performs the credit assignment
function. Using the PSP, the CPS incrementally adjusts the strength of all active rules to reflect
the current payoff, since any active rule could have potentially fired. The general approach for
adjusting rule strength is to first reduce the rule's current strength by some fraction, and then
increase the rule's strength by the same fraction of the payoff. Suppose R I -> R 2 -> R 3 is one of
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the active rule sequences considered during an epis-xde having thre. steps. Also, suppose the
fraction, c, is 0.10, anU the payoff, r, is 100. Figure 2 illustrates the original rule strengths at
time t and the updated rule strengths at the end of the episode (at t + 3).

Me H1  R 2  R3  ruie

100 200 so strengtM

RI1 R 2  R 3
t+3 0_ >0 >0 100 (payoff)

100 190 55

® - Current State

Figure 2. Updating the Strength of Rules

Notice that the rule correctly predicting the payoff, R 1, retains its original strength; the rule that
overestimates the payoff, R 2 , loses its strength, and the rule that underestimates the payoff, R-
gains strength. Over the course of many episodes, the strengths of active rules converge to the
expected level of payoff (Grefenstette, 1986). This observation motivates the use of rule strength
during conflict resolution.

Instead of considering only the current adjustment of the rule strengths, the CPS uses a
time-weighted averages of these adjustments. Specifically, the CPS uses a time-weighted
average to estimate both the mean, ti and the variance, cTi2 , of the payoff associated with each
rule, Ri. Given an end-of-episode payoff, r, a fraction, c (c is the runtime parameter called the
psprate), then Iti is

gi = (1 - c)p., + cr.

Likewise, oil is

= (l - c)01
2 + C(,it - r) 2

Given ti and ai 2 , the estimated strength of Ri is

strength (Ri) = ti - (i.

The strength function ensures that a high strength rule must have both a high mean and a low
variance. The CPS records the pi. ai, and the result of the strength function in the rule's
associated properties mean, var, and strength, respectively.
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CHAPTER 5

THE LEARNING MODULE: THE GENETIC ALGORITHM (GA) USED IN SAMUEL

The standard generational GA first initializes and then evaluates all population members.
After these two steps, the GA enters a generational cycle: population members are selected foi
reproduction, copies of relatively fit individuals are recombined and mutated, and the new
population members are 'aiuated, thus setting up the cycle for the next generation. Figure 3
gives pseudo-code for the standard GA.

begin
t= 0;

initialize P(t)
evaluate structures in P(t)
while termination condition not satisfied do
begin

t=t+ 1;
select P(t) from P(t - 1)
crossover structures in P(t)
mutate structures in P(t)
evaluate structures in P(t)

end
end

Figure 3. The Standard Genetic Algorithm (GA)

A user can find a detailed discussion of GAs in (De Jong, 1975; Holland, 1975; Goldberg, 1989).
Several differences exist between the standard GA as implemented in GENESIS and the GA used
in SAMUEL.
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SAMUEL has several learning operators in addition to mutation and crossover. These
operators are discussed in the sections below. Figure 4 gives the pseudo-code for the GA of
SAMUEL.

begin
t= 0;
initialize P(t)
select operators for P(t)
evaluate structures in P(t)
specialize (rules in) P(t) structures
generalize (rules in) P(t) structures
cluster (rules in) P(t) structures
while termination condition not satisfied do
begin

t=t+ 1;

select P(t) from P(t - 1)
select operators for P(t)
crossover (on rule boundaries) structures in P(t)
mutate (rules in) P(t) structures
creep (rules in) P(t) structures
merge (rules in) P(t) structures
delete (rules from) P(t) structures
update operator probabilities of P(t) sa-uctures
evaluate structures in P(t)
specialize (rules in) P(t) structures
generalize (rules in) P(t) structures
cluster (rules in) P(t) structures

end
end

Figure 4. The Genetic Algorithm (GA) of SAMUEL

INITIALIZATION OF THE POPULATION

The standard GA typically starts with a randomly generated initial population to ensure an
initially unbiased sampling of the search space. Instead, Samuel generates new rules for a plan
based on experience (Schultz, 1990). There are three options for the specifying the plans of the
initial popuiation:

1. The plans may consist of one general rule, called a maximally general rule, that matches all
sensor conditions (option 0),
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OF

2. All plans may have initially the same user-specified rules read in to SAMUEL from the init
file (option 1), or

3. The initial plans may consist of a combination of user-specified rules from the init file and
a maximally general rule (option 2).

The maximally general rule is internally defined in SAMUEL; that is, a user does not have to
define a maximally general rule in the init file. In version 1.3 of SAMUEL, a user can specify
only one set of rules at a time. In other words, SAMUEL only reads in one init file. (The version
of SAMUEL that excludes the GA reads user-specified rules from the rules file instead of the init
file; this version cannot be run without a rules file.)

A maximally general rule has the form

if (and) then (and).

Notice that this rule's condition part matches all sensor values and that the rule's action pan
specifies all action-values of all actions. A plan consisting of only this rule executes a random
walk through the search space, since every action-value has equal strength. However, because
the initial conditions for episodes are different due to random selection, the performance of plans
having maximally general rules differ. After a successful episode, the specialize operator,
discussed below, creates a new rule from a maximally general rule using sensor information. In
this way, SAMUEL generates rules based on experience gained from successful episodes.

SELECTING OPERATORS

As mentioned in Chapter 3, each plan has an associated vector of operator probabilities. An
operator probability is the independent probability of applying an operator in creating an
offspring plan. (The probability vector does not store an operator probability distribution.)
During operator selection, the GA considers each operator, one by one, for all plans of the
population. If an operator probability is non-zero, the GA performs a Bernoulli trial to select
whether or not to apply that operator. The GA records in a vector for each operator the indices of
the plans using that operator. More than one operator may be used in forming an offspring plan.
(Associating an operator probability vector with each plan supports the adaptive operator
mechanism. See the section below on updating operator probabilities.)

EVALUATION OF EACH POPULATION MEMBER

As explained in the Introduction, the GA receives an evaluation of the plan from the CPS
module in terms of the average payoff of a plan over a number of episodes. The GA uses this
average payoff to determine the relative fitness of an individual plan over others in the
population. Unlike the standard GA, the GA in SAMUEL scales the average payoffs so that
selective pressure is maintained as the overall performance of the population rises each
generation (Grefenstette, 1986). In SAMUEL, the fitness of each plan is defined as the difference
between the average payoff received by the plan and a baseline performance measure, The
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baseline is the mean payoff received by the population minus one standard deviation from the
mean. The baseline is adjusted slowly to provide a moderately consistent measure of fitness.
Plans whose payoff fall below the baseline are assigned a fitness measure of zero, resulting in no
offspring. This mechanism appears to provide a reasonable way to maintain consistent selective
pressure toward higher performance.

SPECIALIZE, GENERALIZF., AND CLUSTER

Immediately after evaluating population members, SAMUEL applies the optional speciali:c,
generalize, and cluster operators. The specialize and generalize operators are additional learning
heuristics that SAMUEL uses to generate rules from experience. The cluster operator is logically
associated with the crossover operator performed after select. Since, the rule firing information
needed to apply the cluster operator is not available after the select operation, SAMUEL applies
cluster after generalize.

One of the ways the GA creates new rules from existing ones is by applying the speciali-ct
and generalize operators. The specialize operator creates new rules by specializing rules havrq
overly general conditions. The generalize operator creates new rules by generalizing rules
having conditions that are too specific. These two operations differ from the mutation operator
in that they add new rules to a plan rather than just modifying existing rules.

The Specialize Operator

In order to introduce plausible new rules, the GA applies to evaluated plans a rule
modification operator called specialize. SAMUEL only applies specialize to a maximally general
rule. The specialize operator is similar in spirit to Holland's triggered operators (Holland.
1986). The "trigger" in this case is the conjunction of the following conditions:

1. Tnere is room in the plan for at least one more rule, and

2. A maximally general rule fired during a successful episode.

If these two conditions hold, specialize creates a new rule based on the sensor reading observed
and the action taken on a given step of the episode. The condition for a sensor in the new rule
covers approxhisiely half the legal range for that sensor, splitting the difference (not necessarilh
equally) around the sensor reading. For example, suppose the initial plan contains the
maximally general rule:

Rule 0: if (and) then (and)

Suppose further that the following step is recorded in the evaluation trace during the evaluation
of this plan:
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sensors: ... (range 500) (speed 1000)...
action: (turn 0)
rule fired: Rule 6

Assuming that (1) the range sensor can assume values between 0 and 1500, (2) the speed selsor
can assume values between 0 and 1400, and (3) the turn control can assume values between -1 SO
and 180, then specialize would create the following new rule:

Rule 1:
if (and ... (range 250 1000) (speed 500 1200)
then (and (turn -90 90))

The GA gives this new rule a high initial strength when it is added to the plan. The maxirna!fl
general rule remains in the plan at a lower rule strength. Rule 1 is plausible, since its action N
known to be successful in at least one situation where the sensor values match the conditionm 02

the left hand side.

The Generalize Operator

If a high performing rule only has partially matching conditions, the generalize operate,-
creates a new rule so that boundaries on conditions match all the experienced .ensor value'
SAMUEL applies generalize to all rules except a maximally general rule.

The Cluster Operator

The cluster operator tries to arrange rules by their firing sequence using the best epioc>
from the last evaluation of the plan. Clustering of rules affects the operation of tle crs.,,,'
operator (as explained below).

SELECTION OF PLANS FOR CLONING

The first step in creating plans for the next generation is to select plans for copying o:
cloning." Using fitness values, the GA selects for cloning those plans having relativel hi,- :

fitnesses. High performing plans contribute more clones than low performing plans.

RECOMBINATION OF PLANS USING CROSSOVER

The select operator alone merely produces clones of high performance plans. In SAMUEL.. a
GA recombination operator called croAsV, woik. ,,,e with select to create plausible ne\
plans. The GA moves through the population, applying crossover to randomly chosen pairs ol
clones. The crossover operator exchanges the rules of two plans to form two new offspring
plans.
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The Crossover Operator

The crossover operator in SAMUEL differs from the crossover operator usually applied iM
the standard GA. Unlike the 2-point crossover operator used in the standard GA, SAMUEL either
applies a simple uniform crossover operator on rule boundaries if the plan's rules have not been
clustered; otherwise, SAMUEL applies a restricted form of uniform crossover. Simple uniform
crossover assigns each rule to one of the children plans with equal probability. When applying
the restricted form of uniform crossover, SAMUEL assigns a sequence of rules that fired in
succession during a successful episode to one of the two children with equal probability. In
either case, a particular rule can only be assigned to one of the offspring. For example, to
illustrate restricted crossover, suppose that the most recent traces of the parent plans are a>
follows:

Episodes 8 and 9 for Parent #1:

8. R1,3 - R 1 ,1 - -R, 5  Successful Maneuver

9. R1,2 -R 1,8 -R 1 ,4  Failure

Episodes 4 and 5 for Parent #2:

4. R 2 ,, - R2,5 Failure

5. R2 ,6 - R,2 -R 2 ,4  Suecessfu! Maneuver

One possible offspring might be

Offspring:

(... R1, R, R1 7 R ... R R,

where the subscripts on the rules indicate the plan index and the plan's rule index, respeCti\icl:

Clustering rules ensures that a rule sequence achieving a successftiv maneuver is treated a, a
group during recombination. In this way, the offspring plans will likely inherit some of the
beneficial behavior patterns of their parents. Of course, the success of any new cornination of
rules depends on the context provided by all the other rules in the plan.

MUTATION OF PLANS

After forming new plans using crossover, the mutation operators replace selected rules
within the plans with modified versions of the existing rules. However, if a rule is marked as
fixed, the rule is not subject to the mutation operators. (The user can specify a rule as fted
during program initialization. See Appendix C for details). There are two mutation operators in
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SAMUEL: uniform mutation and creep.

The Uniform Mutation Operator

The mutation operator makes uniformly random changes to rules (and thus also plans). For
example, mutation might alter a condition within a rule from

(range 500 1000)
to
(range 500 800).

Alternatively, mutation might change the action from

(turn 45 90)
to
(range -90 90).

The Creep Operator

The creep mutation operator makes a change that is restricted to the smallest possible
change in a given atom. For example, if "speed" is an attribute with a granularity of 50, then
creep might change an atom from

(speed 200 500)
to
(speed 250 500), or (speed 150 500), or (speed 200 450), or (speed 200 550).

THE MERGING AND DELETING OF RULES IN A PLAN

After the GA forms the new generation's plans, the GA may apply the merge and delete
operators. These heuristics can be thought of as more generalized versions of mutation due to
insertion and deletion. However, unlike the mutation and creep, the merge operator does not
alter an existing rule. The merge operator introduces a new rule to a plan by combining
information from existing rules. The delete removes a rule from the plan.

The Merge Operator

If two rules have the same actions (i.e., the same right hand side) then the merge operator
creates a new rule by taking the union of the two rules' conditions (i.e., the unions of the rules'
left hand sides). The merge operator does not include the newly formed rule in the plan if it
intersects with a rule already in the plan having a different right hand side. As a result, the
merge operator conservatively introduces rules into a plan that do not compete with the plan's
existing rules.
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The Delete Operator

The delete operator removes rules from a plan that are either subsumed by a better
performing rule or that have very low activity.

UPDATING OPERATOR PROBABILITIES OF THE PLAN

Built into SAMUEL is a mechanism for adaptively updating operator probabilities,
depending on the value of the Opupdaterate variable. If Op updaterate is zero, then
operator probabilities remain unaltered throughout a program run. This setting effectively
produces the same result of operator application in the standard GA where the same operator
probabilities apply to all plans. Setting Opupdaterate to a value between 0 and I activates
the adaptive operator adjustment mechanism.

In the standard GA, the "genetic code" of a population member encodes information
directly evaluated by the environment. By appending an associated vector of operator
probabilities to population plans, the GA of SAMUEL also includes in the plan's genetic code
information not directly evaluated. In SAMUEL, operator probabilities change as a by-product of
the selection mechanism. If a new plan is generated using an operator, then the adjustment
mechanism increases that operator's probability. Each generation, the GA adjusts a plan's
operator probabilities as follows:

1. The GA systematically decays all of the operator probabilities associated with each plan by

I - Opupdate_rate.

2. If a new plan is generated using an operator, the new plan inherits the operator probabilities
of its parent. The GA then increases (the previously decreased) operator probabilities of the
new plan as follows:

prob = prob + Opupdate rate/(1 - Op updaterate)

This approach takes advantage of the selection pressure already occurring within the
genetic algorithm. SAMUEL implicitly evaluates operator probability levels along with other
genetic information. As a result, the operator parameter adjustment used within the SAMUEL
system does not require an explicit evaluation of operator fitness. Operator probabilities increase
due to the fact that the offspring being generated represent the success of applying those
operators.

Future studies of SAMUEL will address alternative ways of adaptively adjusting operator
probabilities.
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CHAPTER 6

THE PROBLEM SPECIFIC MODULE

This chapter describes the Problem Specific Module in general terms and in terms of the
EM model specifically. The chapter also discusses how to interface a Problem Specific Module
to the Performance Module.

GENERAL DESCRIPTION

As stated in the Introduction, the Problem Specific Module consists of the sensor and
control interfaces, a world model, and a critic. Before performing matching on rule conditions,
the CPS must obtain information from the sensor interface of the Problem Specific Module. The
sensor interface transforms the state information of the world model to a form that can be used
by the CPS.

After the CPS performs matching and conflict resolution to select a winning (fired) rule, the
control interface of the Problem Specific Module converts the action-value expressed in that rule
to a value that can be used by the world model. The control interface then communicates this
transformed action-value to the world model. The world model updates the state of the
environment.

The world model communicates new state information to the critic function so that the
critic is able to evaluate the performance of the world model. The cijuc evaluates the
performance at the completion of a task, or episode, in the world model. At that time, the critic
communicates this evaluation to the Performance Module.

Upon receiving the critic's evaluation, the CPS performs credit assignment, updating the
strengths of the rules actively involved in bidding to fire. After credit assignment, the Problem
Specific Module records information from the CPS: in particular, the Problem Specific Module
saves the CPS decision loop counter value. Before the CPS begins its next decision cycle, the
world model communicates whether or not an episode has ended.

THE EM PROBLEM SPECIFIC MODULE

The Evasive Maneuver (EM) world model is an air combat simulation having two objects of
interest: a plane and a missile. The objective of the problem is to control the turning rate of the
plane to avoid being hit by the approaching missile. The missile can track the motion of the
plane and steer itself toward the plane's anticipated position. The missile initially travels at a
greater speed than the plane. However, the missile is less maneuverable since the missile has a
greater turning radius than the plane and the missile gradually loses energy as it maneuvers. The
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simulation occurs over episodes that begin with the missile approaching the plane and that end
when (1) the plane is hit, (2) the missile is exhausted, or (3) the time limit of the episode is
exceeded.

The EM world model provides six sensors that give information about the current state:
1. last-turn: the current turning rate of the plane. This sensor can assume nine values, ranging

from -180 degrees to 180 degrees in 45 degree increments.
2. time: a clock that indicates time since detection of the missile. Assumes integer values

between 0 and 19.
3. range: the missile's current distance from the plane. Assumes values from 0 to 1500 in

increments of 100.

4. bearing: the direction from the plane to the missile. Assumes integer values from I to 12.
The bearing is expressed in "clock terminology", in which 12 o'clock denotes dead ahead
of the plane, and 6 o'clock denotes directly behind the plane.

5. heading: the missile's direction relative to the plane. Assumes values from 0 to 350 in
increments of 10 degrees. A heading of 0 indicates that the missile is aimed directly at the
plane's current position, whereas a heading of 180 means the missile is aimed directly away
from the plane.

6. speed: the missile's current speed measured relative to the ground. Assumes values from 0
to 1000 in increments of 50.

The current EM model has a single control: the turning rate of the plane. There are nine possible
action-values: the turning rate can be set between -180 and 180 degrees, in 45 degree increments.

The critic provides payoff information at the end of each episode, defined by the formula:

payoff = 1000 if plane escapes missile.
= 10t+substeps if plane is hit at time t.

Ten substeps make up a decision step in EM.

IMPLEMENTING A WORLD MODEL

The sensor and control interfaces, the world simulation model, and the critic correspond to
different parts of the SAMUEL system.

In setting up the sensor and control interfaces, a user needs to define the components of the
attributes: the name, type, and range. These components need to be placed in the attributes file
so SAMUEL knows how to store and interpret sensor and control information. (Chapter 2
discusses the knowledge representation of rules; Appendix B illustrates the syntax used in the
attributes file.) The read sensors0 and set action(int action, int op) procedures implement
the sensor and control interfaces, respectively.
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A user implements the heart of the world model with the takeactionO procedure.

A user implements the critic function through the combined effect of the takeaction()
procedure and double getrewardo function. The take action0 procedure maintains the state
variables that are used by double getrewardo to compute a reward.

The initenv(unsigned int seed) and reset envo procedures perform between-plan and
between-episode initialization of the environment, respectively. The int endof episode0
function and updateenvironmentO procedure ensure the coordination of the CPS's decision
loop with the world model.

PROCEDURES AND FUNCTIONS

A user's implemented world model must contain the following procedures and functions:
(1) init env(unsigned int seed), (2) reset envO, int end of episodeo, (3) readsensorso, (4)
set action(int action, int op), (5) takeactionO, (6) double get rewardo, and (7)
updateenvironmento. Procedure cps( calls all of these procedures and functions except for
init envo; procedure eval0 (in eval.c) calls init-envo. (Procedure main() in run-plan.c (a
program driver that excludes the GA) also calls init envo). A user's readsensors procedure
must call the CPS procedure recordsensor(int i, int ptr.type, void *ptr). Notice that all of
CPS's variables begin with capital letters.

init-env(unsigned int seed)

The initenv(unsigned int seed) procedure initializes world model variables between

evaluations of plans.

In the EM model, initenv(unsigned int seed) clears the variables episodes, successes,

totalreward, winrate, etc.

reset env0

The reset env0 procedure initializes world model variables between episodes. The
procedure also sets up the initial conditions in the world model.

In the EM model, resetenvO clears endflag, hit, and substep; the procedure also selects a
random initial state for the plane and missile based on the reset parameters.

int end of episodeo

The int end of episodeo function performs end-of-episode clean up operations. The
function returns 1 at the end of an episode, and 0 otherwise.

read sensorsO

The readsenvorsO procedure transforms the internal state variables of the world model to
sensor values used by cpso. The procedure may go through several steps to accomplish this
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transformation. Procedure read sensorso calls the CPS procedure record sensor(int i, int
ptr type, void *ptr) to store sensor values into Sensor[i], an array common to EM and the
CPS's (where i is the sensor index; ptr type is the type of sensor, and ptr points to the sensor's
value).

In the EM model, read sensorso computes the distance, bearing, and heading of the
missile relative to the plane. The procedure then converts these values into sensor readings with
the possible addition of noise.

setaction(int action, int op)

Given the control action's index number (in action) and value (in op), set_action(int
action, int op) converts the action-value specified in the fired the CPS rule to a form used in the
world model.

In the EM model, the CPS expresses turn values using an index having the range [0, 9];
setaction(int action, int op) converts this value to an index having twe range [-4, 4].
Subsequently, this turn index is translated into a real valued angle change of the plane in
takeactionO.

takeactionO

The takeaction( procedure simulates the effect of the control action in the world model.

In the EM model, the takeactiono procedure also maintains state flags indicating how,
and whether or not, an episode has ended. During the piloting of the plane, each decision step in
actually requires several smaller time steps to accomplish. The world model's variable substep
maintains the count of these time steps. The EM state variable hit indicates how an episode has
ended; endflag indicates whether or not an episode has ended. The endflag is set when one of
three conditions is met: (1) hit is set, (2) the missile's speed is below a minimum threshold, or
(3) the number of decision steps (EM variable step) exceeds the maximum number permitted
(Maxtime).

double getreward0

Even though cpso calls double get reward0 every decision step, the function only returns
a reward value at the end of an episode (i.e., when the endflag is set). Function double
get rewardo calculates reward based on the state variables defined in takeactionO.

In the EM model, the reward depends on the state variables hit, step, and substep. If the
plane is hit, reward is (1O)step + substep; otherwise, reward is 1000.

update environment0

The cpso procedure calls updateenvironmentO to update the world model's
environment. At a minimum, update-environment increments the world model's decision step
counter, step.
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CHAPTER 7

DEMONSTRATION OF SAMUEL

SAMUEL is distributed as a tar file. From this tar file, a user creates a Jsrc directory and a
READMEE file. The Jsrc directory houses the source code of an archive library containing most
of the functionality of SAMUEL. By using a special make target in the Jsrc directory, a user can
create additional working directories, separate from Jsrc, for running experiments and for testing
new world models. The user can also create a Jdemo directory.

INSTALLING SAMUEL

Perform the following steps to install SAMUEL:

1. Move the samuel.tar fie to a directory where SAMUEL is to reside, and use the UNIX
tar command on the samuel.tar fie to create the README file and .src directory. On
the command line, enter

% tar -xf samuel.tar
2. Move to the Jsrc directory, and edit the makefile to correctly set the CFLAGS and

EXTRA_LIEBS macros, depending on the type of system (Sun3, Sun4, or the Butterfly's
Mach Uniform System). The default CFLAGS (-04) invokes the optimizing compiler.
The EXTRA LIBS only needs to be defined when compiling for the Butterfly. The
targets creating SAMUEL's executables already include the math library (-m).

3. To create a demonstration directory called ./demo in the directory where SAMUEL
resides as well as to create the random archive library libsam.a in Jsrc enter at the
command line:

% make all

RUNNING THE SAMUEL DEMONSTRATION

Change to the ./demo directory:

% cd .Jdemo

The demo script in the Jdemo directory runs a shell script demonstrating the display output of
SAMUEL for different plans. The script first copies one of the rule files (i.e., rules.name) to the
rule file used by SAMUEL during input, and then executes a version of SAMUEL that does not use
the GA. Notice that the params.demo file does not have any GA parameters.
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The ./demo directory contains two files containing possible plans: rule.best and
rules.rand. The rules.best file demonstrates graphically a high performing plan learned by
SAMUEL in the EM environment. For basis of comparison, the rules.rand shows SAMUEL's
performance in the same environment given a plan having rules with random action responses.

To run the SAMUEL demonstration, select one of the two rule files and enter the suffix of the
rules file (i.e., best or rand) at the command prompt. For example, to create a display using the
rules.best enter:

% demo best

To exit the demonstration, enter control C at the keyboard.

CREATING WORKING DIRECTORIES

The makefile in the ./src directory provides a user with a three step procedure for creating
versions of SAMUEL without altering the original source code, A working directory can contain
any user-generated code: modified copies of the SAMUEL source code, new source code, and
executables. Ideally, a user should create a separate working directory for each major set of
experiments.

1. By selecting a working directory name (directory name), and entering at the command
prompt .

%make exp "EXPDIR- directoryname"

a user can create a working directory. Notice that working directories must be created from the
Jsrc directory. After making a working directory, the system should respond with:

Created directory ../directoryname
Now cd to that directory and type...

"make all"

2. Change to the working directory:

% cd ..Idirectory name

The working directory should contain the input files attributes, rules (for the run-plan
executable), and params. The directory should also contain params.def, an on-line
documentation file describing the parameters. (The directory does not contain a init
file for running with samuel.) The "make exp" target should have also copied over
from Jsrc various shell scripts: (1) the run-samuel script and its children scripts
mkgraph, avegraph, getindex, and ttest, and (2) ch and p, utility scripts for
modifying and examining the params file, (3) wins, the utility script for summarizing
the trace file, and (4) the show script for viewing one or two graphs using the eview
previewer.
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3. To make all of the SAMUEL executables in the working directory enter at the command
line:

% make all

This creates the executables: (1) samuel, SAMUEL using the EM domain, (2) run-plan,
a separate driver that allows a user to investigate the the EM domain using the CPS without
having new plans generated by the GA, and (3) a couple of programs, retest and extract,
used in the run-samuel script. See the section below on using the run-samuel shell script.

If the working directory does not contain source code having the -ame names as the
original source code in the Jsrc directory, then issuing the make command creates the
SAMUEL distribution executables. Otherwise, the compilation overrides the original
distribution source code with user-defined versions. For example, suppose a user creates a
working directory called ./EM testl and places a new version of cross.c in this directory to
test the effectiveness of a new crossover operator in the EM environment. During
compilation of samuel, the user's version of cross.c in JEM testl supersedes the cross.c
file used in making the libsam.a archive library.

MAINTAINING INPUT FILES

In general, to run SAMUEL, a user needs to consider three input files: attributes,
params, and init. If a user runs SAMULL without the GA, then the rule specification file is
rules instead of init. SAMUEL expects to read files having these names. However, the
default names init and rules can be changed by initializing the parameters initfile and
rulefile, respectively. (See Appendix Al.)

The attributes file describes sensor and control attributes for the EM world model.
Since an attributes file is domain-specific, a user typically has one attributes file for a
given world model. Appendix B describes the attributes file in more detail.

If a user wants to examine SAMUEL's performance in solving a problem using different
parameter scenarios, a user should maintain separate params.name files. Before a program
run, a user should copy a particulbr file of interest to the params file.

Similarly, if a user plans to compare SAMUEL's performance for different initial plans,
a user may have several rule initialization files. A user should put each plan to be tested in a
separate file. Before running SAMUEL, a user would then copy a particular init.name file to
init.

OUTPUT FILES OF SAMUEL

Depending upon user options, SAMUEL creates several output files. These files include:
best, detail, dump.env, last, log, out, rules.out, save, trace, and wins. A user can change
default names of the output files by setting the parameters in the params file. A user can
also control which output files SAMUEL generates by setting flag parameters in the params
file. Table 2 lists these flag parameters and the corresponding default output file names.
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Flag Parameter Default File Name Module

etrace trace CPS
ruletrace rules.out CPS
best interval best GA
last last.n GA
log log GA
out out GA
detail detail EM
dump "dump.env" EM

Table 2. Output Parameters

The GA parameter bestinterval specifies the generational interval for wAiiting I-: best; it
best interval is zero, SAMUEL does not create the file best.

SHELL SCRIPTS

The distribution includes some shell commands that make working with SAMUEL easier.
These include: ch, p, run-samuel, show, and wins.

Modifying and Inspecting the params File

A user can alter parameters in the params file by using the ch command. For example to
turn off the display, give the command:

% ch draw 0

The ch command first checks the params.def file to validate the parameter name before
changing the params file. If a user does not specify a value for the parameter, then ch removes
the parameter from the params file. For example,

%ch draw

removes parameter draw from the params file.

When a parameter is not included in the params file, SAMUEL assumes the default value for the
variable associated the parameter. In this example, not having an entry in the params file for
draw gives the same result as setting draw to zero, since the default value of Drawflag, the
variable set by the draw parameter, is zero.

A user can display the current parameters in the params file by using the p command:

% p

-31.-



Training and Testing Using run-samuel

In general, a plan should be tested a large number of episodes to obtain a good estimate of
the plan's performance. Unfortunately, the computation time for evaluating plans is very long
relative to the search time for discovering new plans. One technique for reducing the evaluation
time is to decompose SAMUEL into a "training" component and a "testing" component. This
decomposition technique is viable due to the fact that a GA performs well even when
environmental feedback is approximate. During training, the CPS would provide the GA in
SAMUEL with a rough average of a plan's performance using only a few episodes. Based on this
performance estimate, the training system would filter out high performing plans for further
evaluation. The "testing" system (identical to the CPS of SAMUEL) would then perform more
extensive testing of these best performing plans asynchronously while the GA of SAMUEL
continues to search for even better performing plans. The testing system in this scucario could
represent an offline target system for the plans.

This decomposition technique is the motivation behind the run-samuel script. Instead of
testing of the current best plans asynchronously, however, SAMUEL periodically collects over the
generations some top percentage of the population's best performing plans into a "best" file.
Each stored generation is called an epoch. SAMUEL generates a best file for each repetition of
the experiment. After completing the training, a separate CPS module tests the plans in the best
files using the same parameters as the training run, except that the the duration of the episodes is
longer (e.g., 100) and the rule strengths of the plans are not adjusted.

The run-samuel script next retests extensively over even a larger number of episodes (e.g.,
1000) the best plans from each epoch generated during the extended evaluation. If a user also
specifies the suffixes of additional parameter files in the command line argument of run-samuel,
then the script also retests the best plans of the epochs using those parameter fi!es. Ultimat,-l
the run-samuel script generates files containing data for learning curve plots. A user can then
plot a comparison graph showing the training run's average experimental learning curve and a
particular testing run's average experimental learning curve.

Not only does the script provide a user with a convenient way to run SAMUEL. the script
also provides a user with a easy way of testing the robustness of the run's best plans with respect
to different sets of input parameters. For example, a user may want to investigate the robustness
of a plan that has been trained without noise in the world model's sensors in a world model
having noisy sensors. In this case, the training parameter list would have the noise set to zero
(or not included, since the default is zero), and the testing parameter list would have noise set at
some value between 0 and 1. If noise were set to 0.10, then a sensor would have added iv it a
random deviant from a normal distribution having a mean of 0.0 and a standard deviation equal
to 10 percent of the legal range of that sensor.

The run-samuel script can take several arguments. The first argument is the suffix of a
params file used as input for the training environment and the first testing environment. The
remaining arguments are the suffixes of params files used as input to specify additional testing
environments. If a user invokes run-samuel without arguments, then SAMUEL uses the params
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file for the training environment and the first testing environment. For example, suppose a user
specifies three arguments: the first argument is train, the second argument is noisel, and the
third argument is noise2. The command for running SAMUEL would be

% run-samuel train noisel noise2

The run-samuel script would run SAMUJEL using params.train, and test the resulting best files
using params.train, params.noisel, and params.noise2. Notice that even though the
parameter files used for testing may include GA parameters, GA parameters are not used during
testing. The script tests plans without modification from the GA, and without modification from
the CPS's credit assignment function. If params.train were used as a basis for training and
testing, then run-samuel would generate three summary sets of data for plotting graphs: (1
learning curve graph.train.train, (2) learning curve graph.train.noisel, and (3) learning curve
graph.train.noise2. A user would probably plot (1) and (2) together and (1) and (3) together to
show comparisons.
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Description of the run-samuel Script
The run-samuel script on-line contains useful comments. The description below

elaborates on these comments. The beginning of the run-samuel script is as follows:

Comment Statement

1. #!/bin/csh -f

2. if ($#argv > 0) then
cp params.$1 params

endif

3. samuel

4. set exps= 'grep experiments params4
set exps=$exps[3]
set episodes=100
set ex=1

5. while ($ex <= $exps)
uricompress best.$ex

6. retest best.$ex $episodes I mkgraph > ernoch.Sex

7. rm -f testplans.$ex

set cmd='print $2'
set n='wc -1 epoch.$ex'
set n=$n[1I]
set j=l
while ($j <= $n)

cat epoch.$ex I awk "(NR==$j) { $cmd)"
I extract -c best.$ex >> testplans.Sex

@ j+=I
end

8. rmnepoch.$ex

compress best.$ex

9.~ @ ex+=lI

end
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1f a user removes the comment sign (#) from the first line, the run-samuel script . orkN i,
subshell without reading the .cshrc file before invocation.

2. If there are arguments, the script copies params file of the first argument to params.

3. Using the first parameter file, the run-samuel script invokes samuel. For each experiment
ex, where ex = 1 ..... experiments, (experiments is specified in the params ile
samuel creates a file best.ex. Two parameters affect the organization of each best.ex file
(1) best interval sets variable Best interval (default is 10), and (2) bestpct sets var ihlbc
Best_pet (default is 0.2). Best interval specifies the Letween-generation-interval. or
epoch, for writing out the population's best plans to the best.ex file. Best pct specifies t.h,
percentage of the population making up the best performing plans. Every Bestinterial
generations samuel appends the current Best pct of the population to a best.ex file. Easy
best.ex is reduced in size using the UNIX compress command.

4. Before entering a while loop that examines each best.ex file, the script sets up some interr .i,
variables. The variable ex is the experiments loop counter. The variable exps Ps .

number of experiments used as the upper bound condition in the while loop. The \CrV.
isolates the number of experiments by using UNIX grep command to extract fromi th.;
params file the expression containing the number of experiments (e.g., experiments = I(
The script sets the episodes variable, one of the command line inputs to the retest prou,,ra-,
invoked in the following while loop, to 100. To change the number of episode, for retest.
user would edit the run-samuel script.

5. After completing the samuel run, the script enters the while loop iterating ,,
experiments. By using the UNIX uncompress command, the script first restores tiKc
best.ex file for the curent experiment so that retest can examine the file.

6. The run-samuel script runs retest in order to get a better statistical estimate of the
performance of each plan. Using a best.ex file and episodes as command line input, the
retest program recomputes the performance of the plans in the best.ex file using a larger
number of episodes (e.g., 100) than the number used in the samuel run (e.g.. 10 . Ih'
retest gives all of the best plans an extended evaluation without modification by the GA or
the CPS. Like the samuel program, the retest program uses the params tile as inpult
However, retest overrides some parameters settings (without affecting paramsl
Specifically, retest turns off the history mechanism (Historyflag = 0), turns off the thc:
profit sharing plan (Psprate = 0), and sets the maximum number of cycles (Ncclesl to
10,000,000. After processing a best.ex file., the script pipes the results of retest to the
mkgraph script. The mkgraph script accepts as input the extended evaluation information
from retest. For eacn epoch, the mkgraph script determines the best plan. Summaries ot
these best plans are then written to epoch.ex. This summary data include the index number
of each epoch's best plan.

7. Using the index of each epoch's best plan stored in epoch.ex, the extract program extract>
the best plan of each epoch from best.ex. The extract program writes out these plans to
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testplans.ex. The testplans.ex file is written in a compact rule format that gives only
numeric information from the rules.

8. Having extracted the necessary information from best.ex, run-samuel reduces the size of
the best.ex files once again to save disk space by using the UNIX compress utility.

9. At the bottom of the first while loop, run-samuel increments the experiment counter, ex.
The while loop repeats until ex is greater than exps.

The middle of the run-samuel script is as follows:

Comment Statement

10. set episodes = 1000

if ($#argv > 0) then
set i = Sargv[l]
setk= I

else
set i = params
set k = 0

endif

11. while ($k <= $#argv)

rm -f graph.ave
rm -f graph.all
if ($k > 0) then
set j = $argv[$k]
cp params.$j params

else
set j = params

endif

10. The second half of the script starts by setting the script variable episodes to 1000. This
indicates that each epoch's best plan will be retested for 1000 episodes. The script then
initializes the variables i and k. The variable i stores the first argument of the script (a
suffix to a params file). This params file specifies the parameters used as a base of
comparison. The script then initializes the following while loop's index variable k. If there
are no arguments to the script, then the script examines only the default params file having
no suffix, and the following while loop executes only once.

11. Next the script enters the first of two while loops, one nested inside the other. The outer
while loop iterates over the index to the argument list of the run-samuel script (k). Based
on this index, the script sets j to the suffix of current params file being retested. The first
time through the loop, j is the first argument itself. The script then copies the current
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params.j to the file params. Notice the script overwrites the existing params file in the
working directory. If there are no arguments, then the file suffix stored in j is called pararns
to indicate that there is no specific file.

The last part of the run-samuel script is as follows:

Comment Statement

12. set ex = 1
while ($ex <= $exps)

retest testplans.$ex $episodes > graph.$i.$j.$ex

13. avegraph $i.$j.$ex

14. cat graph.$i.$j.$ex I getindex I

extract testplans.$ex > bestplan.$i.$j.$ex
rm graph.$i.$j.$ex
@ ex += 1

end

15. mv graph.alU graph.$i.$j.all

mv graph.ave graph.$i.$j

16. if ($i != $j) then

ttest graph.$i.$i graph.$i.$j > ttest.$i.$j
endif
@ k += 1

end

12. A nested inner while loop examines each of the experiments, ex. The retest program reads
in the parameters specified in the params file as well as accepting the command line
arguments indicating the plans to be tested (testplans.ex) and the number of episodes
(episodes). By executing the the two while loops, the script retests plans using all
parameter sets specified through argument list (outer loop index) for all experiments (inner
loop index). Each retest generates output to graph.i.j.ex, where i is the first parameter file
argument, j is some other argument (suffix of first through last params files), and ex is the
index of the experiment.

13. Next, the avegraph script does the following: (1) joins each graph.i.j.ex file into a column
of a table stored in file graph.all, and (2) for each point in the learning curve (each row),
computes the average and standard deviation of the performance over the experiments
examined so far in the inner while loop, and (3) writes out the current average learning
curve to graph.ave. Each time through the while loop, avegraph writes over the old
graph.ave.
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14. Using getindex script, run-samuel finds the index of the best plan from the graph.i.j.ex
file. This index is piped into the extract program which writes out the corresponding plan
to bestplan.i.j.ex.

15. Before examining the next params file argument (index j), run-samuel copies the
graph.all and graph.ave for the current parameter arguments to graph.i.j.all and
graph.i.j.ave, respectively.

16. For the cases where different arguments are being examined (e.g., i = first parameter
argument and j = second parameter argument), run-samuel performs a student t-test
between the data points of the two files and writes the result of the test to ttest.i.j.

An Example Run Using run-samuel

In this example, we examine how sensor noise affects SAMUEL's performance. The
example is based on an experiment reported in (Grefenstette, 1990).

There are two parameter files given as arguments to run-samuel: params.train, and
params.noise. The params.train file is as follows:
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CPS PARAMS

episodes = 20

EM PARAMETERS

control = 1
draw = 0

GA PARAMS

experiments = 10
gens = 100
popsize = 100
length = 32
mrate = 1
c_rate = 1
hist = 1
cluster = 1
specrate = 1
init = 0
save = 0
last = 0
single-act I

The params.noise file is identical to param.train, except that there is an additional line in the
EM parameters: noise = 0.10. (Note: A user needs approximately 3.5 Megabytes of disk space to
run the following example. The clock run time is approximately 13 hours on a dedicated Sun
SPARCSTATION.) Suppose we make the following run by entering:

% run-samuel train noise

The samuel executable would repeat the experiment 10 times. For each iteration, the GA would
generate new plans for 100 generations; each generztion, there would 100 plans in the
population; each plan would have no more than 32 rules, and the CPS would find an average
evaluation of each plan using 20 episodes. Notice that in this run we have turned off the operator
update mechanism (oprate is zero).
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In order to initialize each plan to a maximally general rule, we set init to 0. New rules are
generated primarily through the specialize operator, so spec rate is 1. In order to create
diversity, the crossover rate and the plan's mutation rate are also very high (crate = 1; mrate
= 1). (The mutation rate in a plan is the default value of 0.01, since mu rate is not defined.)
Rules are clustered before crossover is performed (cluster = 1). Since we are clustering rules,
the history mechanism needs to be on (hist = 1). Setting single act to I constrains specialize
and mutate to create rules specifying only one action-value (e.g., (turn 45 45)).

Every 10 generations, SAMUEL writes out the current best plan to file best.ex (which is the
default interval of generations), where e% is the experiment number. No savefiles are to be kept,
so save is zero. Setting the EM parameter control to 1 indicates thrt actions are selected through
rule competition in the C'S. A user does not affect the program run through display inputs.

In all other cases, SAMUEL assumes the default parameter values. (In the on-line version of
the params file, the genrate, del rate, merge_rate, creep rate, crprate, oprate, and
good.payoff parameters are explicitly set to their default values.)

The run-samuel script would generate learning curves graph.train.train and
graph.train.noise. If a user has eview previewer installed, then the user can view these graphs
as follows:

% --how graph.train.train graph.train.train

Each plot has vertical bars at the data points indicating the standard deviations of the
measurements.

Figures 5 shows a comparison of these learning curves. Rather than using error bars to
indicate the range of the measurements, the plot uses vertical dotted lines to indicate significant
statistical differences between the curves.
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LEARNING CURVE COMPARISON: NOISE-FREE SENSORS AND 10 PERCENT NOISE
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Summarizing the Trace File

The wins command summarizes the trace file. The command

% wins trace

reports both mean and variance for the number of wins in samples consisting of 50 episodes
each. The output format is:

totalwins totalepisodes mean std samples

WORKING DIRECTORIES FOR NEW PROBLEM SPECIFIC DOMAINS

The user should create a working directory for each new Problem Specific Module. For
example, instead of creating a working directory for testing the EM environment (such as
JEMtestl), suppose a user creates a new working directory called ./MYDOMAINtestl. A user
should be aware that the Makefile makes two assumptions: (1) the Makefile expects a user to
place the C source code modeling the Problem Specific Module in only one file (the EM domain
uses the em.c file), and (2) the DOMAIN macro needs to be defined for each domain. For
example, if a user's new model is in the mydomain.c file, then the user needs to set DOMAIN =
mydomain in the Makefile of JMYDOMAIN_testl. If the user enters "make all" at the
command line after modifying the Makefile, then the MYDOMAIN_testl directory should
contain the executables samuel and run-plan that are specific to the new domain.

-41-



RUNNING SAMUEL STARTING FROM A CHECKPOINT FILE

The SAMUEL system provides a way for the user to periodically save the current state ot the
GA. Should a user's program stop before its normal completion, the user can restart SAMUEL
based on information stored in a checkpoint file. To store a checkpoint file a user needs to define
the following in the params file: save interval, the number of generations between saving state
information (default = 10), save, the number of save files maintained (default = 1), and savefile,
the name of the save file (default = save). If there is more than one save file, then the GA saves
the current state to these files in a round robbin fashion.

The GA saves its current state information by calling save stateo in procedure generateo
before advancing the population pointers for the next generation. Procedure save stateo writes
the GA's current state to the save file. To start the program again from the last saved state, a user
needs to set the restart flag to 1 in the params file so that the main() program of samuel will
call restart() during the initialization phase. Procedure restart() reads the file savestate0
stored. If there is more than one savefile, the user also needs to specify, via parameter savefile,
which savefile is to be read during the restart of samuel.
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CHAPTER 8

PROGRAM SUPPORT AND MAINTENANCE

All questions and program bugs should be reported to:

John J. Grefenstette
Naval Research Laboratory, Code 5514
The Navy Center for Applied Research in Artificial Intelligence (NCAR A I)
4555 Overlook Ave., S.W.
Washington, D. C. 20375-5000

Internet: gref@aic.nrl.navy.mil
Telephone: (202) 767 - 2885

Suggestions and comments regarding improvements to this User's Manual are also
welcome.
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APPENDIX A: RUNTIME INPUT PARAMETERS

Many features of SAMUEL are controlled through run-time parameters. The params file
contains the runtime parameter settings. The default value a parameter is in braces after the
parameter name. The params.def file contains a table specifying the parameter's name, the
associated variable name in SAMUEL, and the default initial value of the associated variable.

A user may list the parameters in the params file in any order. However, should the user
specify a parameter multiple times, the parameter will take on the value of the last entry scanned.

A user may incorporate comments in the params file by beginning a line with ";" or "#."

In all cases where a file name is specified, the names "stdin" and "stdout" can be used
instead to indicate that data are to be read from stdin, or printed to stdout, respectively.
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APPENDIX Al: CPS RUNTIME PARAMETERS

Parameter Variable Default Description

bbarate Boa-rate 0.01 Update rate for bucket brigade.

cycles Ncycles 1000000 Approximate upper bound for number

of cycles to execute. The actual
number "f cy"%: tmay exceed this,

because CPS alays completes an
episode once started. CPS , -,s
until either cycles or episodes is
reached at the beginning of an
episode. A user can pick either
one as the real limit by setting
the other one high.

debug Debug 0 If set, CPS prints voluminous
tracing statements for debugging
purposes.

episodes Nepisodes 1000000 Upper bound on number of episodes

to execute. CPS runs until
either cycles or episodes is
reached at the beginning of an
episode. A user can pick either
one as the real limit by setting
the other one high.

etrace Etrace flag 0 If set, the CPS prints a line of

statistics to tracefile for
each episode, showing episode
counter, number of steps, payoff,
and number of partial matches.

hist Historyflag 1 Keeps an internal trace of each

step performed by the CPS. This
history is necessary for specialize,
cluster, and generalize to work.
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Parameter Variable Default Description
outrulefile Outrulefile rules.out Name of output file for ruletrace.

psprate Psp rate 0.01 Update rate for profit sharing plan.

randcr Rand cr flag 0 If set, conflict resolution is
"random" in the sense that the
rule strengths are ignored. In
fact, the first rule in the match
set that suggests a given action
becomes the bidder for that action,
and all bids are considered equal.

rulefile Rulefile rules Name of input file containing

rules.

rules Nruleb 6 Number of rules in the rule

file ,ipon initialization.

ruletrace Ruletraceflag 0 If positive, prints out all t'-

current rules to the outrulenle
every ruletrace episodes.

seed Cps-seed 987654321 CPS random number generator seed.

tracefile Tracefile trace Name of output file for trace.
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APPPFN-v Al: CA RUNT1ME. PARAMETERS

Parameter Variable Default Description

ancestors Ancestors 2 Number of population arrays to

keep. Need a! least two, for
current and last generation.
Could be used for keeping
genealogical traces.

baserate Baselinerate 0.2 Rate at which the selection

baseline is updated,

bestinterval Bestinterval 10 Generations between printing to

bestfile.
If 0, no printing to bestfile.

bestfile Bestfile best Output file for the best plans.

Every best_interval generations,
the top bestpct of the current
population is printed in the
bestfile.

bestpct Bestpct 0.2 Perceniage of population to print

in the bestfile.

boosttrice Boostop-trace 0 Sends trace relating to operator

adjustment of plans to standard out

c_rate Oprob[CROSS] 0.0 Initial rate for crossover.

cluster Clusterflag 1 If set, crossover assigns clusters

of rules to the same offspring;
otherwise, crossover performs
uniform random crossover.
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Parameter Variable Default Description
cluster-rate Clusterrate 0.2 The inverse of the mean length

of a cluster, where a cluster is a
set of rules that fire in sequence
in a successful episode. Used by
cluster and crossover
to assign clusters of rules to the
same offspring.

creeprate Oprob[CREEP] 0.0 Initial rate for creep,

which is lik, mutation but makes
the smallest possible change
instead of a random one.

crprate Creeprate 0.01 If positive, then crp_rate is the

inverse of the mean waiting time
between applications of creep. For
example, if crp_rate = 0.01, the
chance of any atom being mutated is
about 1 percent.

delrate Oprob[DEL] 0.0 Initial rate for delete

-- deletes inactive rules.

experiments Nexperiments 1 How many experiments to run. Each

experiment begins with a fresh
initial population and a different
random seed. If experiments > 1.
the bestfile will have the experiment
number appended to the names
specified in the params file.
For example if the bestfile is
called best and experiments
> 1, then the best plans for the
first experiment will be printed
in the file best.l.
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Parameter Variable Default Description
pa seed Seed 987654321 GA random number seed.

gen rate Oprob[PCOVI 0.0 Initial rate for generalize

-- covers partially matched rule
firings.

geneology Geneology 0 If set, print out every plan

evaluated by the GA. Could he
used for genealogy studies, but
takes up many megagbytes of storage.

gens Maxgens 1000000 Maximum number of generations to

run. GA runs until either
trials or gens is reached at the
beginning of an generation. A user
can pick either one as the real
limit by setting the other one high.

good-payoff Goodpayoff 1000.0 Payoff threshold for a successful

episode. Used by specialize,
generalize, and cluster.

init Initfiag 0 Plans are initialized depending

on init. If:
0 with a general rule.
I with rules from the initfile

and a general rule.
2 with rules from initfile.

initfile lnitfile init Input file containing rule set

used to seed initial population.
See init for initialization
method.

last Lastflag 1If set, save the final state of

experiment n in file last.n.
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Parameter Variable Default Description
length Length 100 Maximum number of rules in any one

plan. Maximum value: 512.

log Logflag I If set, print the starting time,

ending time, and overall offline,
online, and best measure in the
logfile.

max Maxflg 1 If set, perform maximization;

otherwise, perform minimization.

logfile Logfile log File for printing system activity

log.

m-rate Oprob[MU] 0.0 Initial rate for mutation.

mergerate Oprob[MRG] 0.0 Initial rate for merge

-- merges rules with same rhs,
as long as new rule do not
intersect with any rule already
present.

mu rate Murate 0.01 If positive, then murate is the

inverse of the mean waiting time
between mutations. For example,
if mu rate = 0.01, the chance of
any atom being mutated is about
1 percent.

op_rate Opupdaterate 0.1 Rate for updating the operator

probabilities. If 0, no updating
is done.

out Outflag I If set, writes out statistics each

generation to the outfile.

outfile Outfile out Output file for printing GA

performance stats.
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Parameter Variable Default Description

popsize Popsize 50 Population size.

restart Restartflag 0 If set, read a previously saved

state from the savefile and
continue the run from that point.

savefile Savefile save Output fie for a snapshot of

current state for later restarts.

save Nsaves 1 Number of savefiles to keep.

saveinterval Save-interval 10 How often (in generations) to

create a savefile.

single-act Singleact 0 If set, specialize, mutate,

and creep are constrained to
create rules with a single value
for each action, e.g., (turn 45 45)
rather than (turn 0 90).

spec_rate Oprob[GCOV] 0.0 Initial rate for specialize

-- covers general rule firings.

stdev Stdev_weight 1.0 The number of standard deviations

baseline is below the mean. That
is, if stdev = n, then baseline
tends toward
(mean - (n)(standard deviation)).

trace Traceflag 0 If set, print tracing statements

(usually, whenever a major GA
function is entered or exited) to
tracefile. For debugging.
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Parameter Variable Default Description

trials Maxtrials 1000000 Approximate maximum number of

trials (evaluations) to perform.
The actual number of trials may
exceed this, because GA always
completes a generation once

started. GA runs until either
trials or gens is reached at the

beginning of a gene.ration. A user
can pick either ont as the real
limit by setting the. other one

high.
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APPENDIX A3: EM RUNTIME PARAMETERS

Parameter Variable Default Description

bear hi Bear hi 12.0 Upper bound for bearing at the

start of each episode. Maximum
bear hi is 12.0.

bearlo Bear-lo 0.0 Lower bound for bearing at the

start of each episode. Minimum
bear-lo is 0.0.

control Control 1 Indicates how actions are selected.

If:
0 actions are random.
I actions are selected by

competition among the rules.
2 the user specifies the actions

interactively.

Interactive commands for EM:

x make a random turn
s straight
r n turn right 45n degrees
I n turn left 45n degrees
q terminate this episode

(with success)
n turn (45n - 180) degrees
d dumpfile store env in named file
c dumpfile restore env from named

file
R switch control to rules

for the rest of the run
z take the action

recommended by the
firing rule
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Parameter Variable Default Description
delay Delay 1 Controls the speed of the display.

detail Detail 0 Controls level of detail printed

in the detailfile. If:
0 no information is printed.
1 information concerning the

sensor readings, the
selected action and the
firing rule is printed.

2 same as 1 except firing rule
is not printed.

3 same as 2 except symbolic
labels are omitted.

detailfile Detailfile detail Indicates the name of the file to

which detail information is
printed.

draw Drawflag 0 0 no display.

I display with inertial background
frame (both plane and missile
move around screen).

2 display with plane centered
(only missile appears to move)
but orientation of background
frame remains fixed.

3 display orientation is fixed
with respect to plane --
this makes it easier to see
the missile's relative motion
wrt to the plane.

4 like 1 except uses a special
font containing icons for
plane and missile.
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Parameter Variable Default Description
dump Dumpenv 0 If dump > 0, the environment is

stored in dumpfile when Cycle =

dump. Can also be used inter-
actively if control = 2
(and draw > 0).

dumpfile Dump_env_file "dump.env" The file into which EM state

variable are written during a dump.

emseed Envseed 987654321 Seed for EM random number

stream.

head hi Head hi 0.0 Upper bound for bearing at the

start of each episode. Maximum
head hi is 360.0.

headlo Head lo 0.0 Lower bound for heading at the

start of each episode. Minimum
head lo is 0.0.

maxtime Maxtime 19 Controls the maximum number of

steps in an episode. If the plane
survives this long, it wins the
episode.

mspeed_loss Mspeed_loss 5.0 How much speed the missile loses

when flying in a straight line.

mspeedmin Mspeed_min 100.0 Missile speed threshold below

which missile falls out of sky.

mturnmaxhi Mturnmaxhi P1/16 Upper bound for the maximum change

in missile direction per substep.

mturn.maxlo Mturn.maxjio PI/16 Lower bound for the maximum change

in missile direction per substep.
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Parameter Variable Default Description

noise Noise 0.0 Controls noise to be added to

sensors (before discretizing).
If a sensor has a range of R,
and its true value is X, the
noisy value is selected from a
normal distribution with mean
X and standard deviation
(noise )(R).

pspeed-max Pspeedmax 333.0 Plane speed when flying straight.

The plane speed when turning is a
decreasing function if the
turning rate.

rangehi Rangehi 1000.0 Upper bound for range at the start

of each episode. Maximum rangehi
is 1500.

rangelo Rangelo 1000.0 Lower bound for range at the start

of each episode. Minimum
range..o is 0.

restore Restore-env 0 If restore > 0, the environmental

state is restored from restorefile
during the first cycle of the run.

restorefile Restoreenvfile "dump.env" The file from which EM state

variables are read during a
restore operation.

safe Safe-radius 10.0 Radius of safe distance from plane

to missile. If the closest point
of approach drops below the safe
range during any substep, the
plane is hit.
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Parameter Variable Default Description
speedhi Speedhi 700.0 Upper bound for speed at the start

of each episode.
Must be non-negative.

speed-lo Speedlo 700.0 Lower bound for speed at the start

of each episode.
Must be non-negative.

time_hi Time hi 0 Upper bound for time sensor at the

start of each episode. Maximum
time hi is 19.

time_lo Timeto 0 Lower bound for time sensor at

the start of each episode.

tstep Tstep 10 Number of substeps per simulation

step. During each substep, the
plane and missile move in straight
lines, and the screen is updated.
Increasing this parameter improves
the smoothness of the object's
motion, but slows down the
simulation.

turnio Turnio 0 Lower bound for last-turn at the

start of each episode. Minimum
turnlo is -180.

turn hi Turn hi 0 Upper bound for last-turn at the

start of each episode. Maximum
turn hi is 180.
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Parameter Variable Default Description

xscale Xscale 40 Controls the screen magnification

in the horizontal direction.
Smaller values give greater
magnification. Should be 80%
of yscale.

yscale Yscale 50 Controls the screen magnification

in the vertical direction.
Smaller values give greater
magnification. Should be 125%
of xscale.
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APPENDIX B: THE ATTRIBUTES FILE

The attributes file describes the format of the rules. The first two lines must specify the
number of conditions and actions

conditions = <n>
action = <m>
Each condition and action is then described in turn.
For linear or cyclic attributes, the format is:

condition <i>: (or action<i>:)
name = < cond-name >
type = linear (or cyclic)
low = < low-value >
high = < high-value >
values = < value-count >

where cond-name is a label of up to 16 characters, low-value and high-value are integers, and
value-count is the number of endpoints in the range from low-value to high-value. For example,
entries for some EM attributes are shown in Figure 6.

condition 3:
name = range
type = linear
low = 0
high = 1500
values = 16

condition 5:
name = heading
type = cyclic
low = 0
high = 350
values = 36

action 1:
name = turn
type = linear
low =-180
high= 180
values = 9
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Figure 6. EM attributes Entries.

For structured attributes the entry must define the tree of values bottom up. The format is:

condition <i>: (or action<i>:)
name = < cond-name >
type = structured
leaf-values = < n >
<value 1> ... <value n>
interior-values = < m >
name = < interior-value 1 >
children = < c_1 >
<child 1> ... <child c_>

name = < interior-value m >
:h.",,.,., =-- . c_m -
<child 1> ... <child cm>

An example is shown in Figure 7.

condition 7:
name = weather
type = structured
leaf-values = 4
snow rain cloudy sunny
interior-values = 2
name = wet
children = 2
snow rain
name = dry
children = 2
sunny cloudy

Figure 7. Entry in attribute File for Structured Sensors.

For pattern attributes the format is:
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condition <i>: (or action<i>:)
name = < cond-name >
type = pattern
pattern length = < 1 >
values = < n >

Here is an entry for a pattern attribute:

condition 8:
name = vision
type = pattern
pattern length = 6
values = 61

This defines vizion as a 6 bit pattern that can take on binary values between 0 (000000) and
60 (111100), inclusive. For true bit patterns, the number of values will be a power of two, but
this mechanism also allows using patterns for numeric attributes as well.
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APPENDIX C: THE RULES FILE AND THE INIT FILE

Both the rules and init input files contain rules having the same syntax as those generated
by SAMUEL on output. The init file contains initial rules used to seed SAMUEL's population. To
use file input, the init parameter in the params file must be 1 or 2. The rules file is used in
conjunction with running SAMUEL without the GA. (For example, samuel reads the init file;
run-plan reads the file rules.) A rule in either file consists of four lines: (1) the rule number and
the condition(s), (2) the action(s), (3) the parent, created, fixed, matched and partially-matched
associated properties, and (4) the action, bid, active, fired, mean, var, strength, act, and bias
associated properties. For example, a typical r,!le might be

Rule I if (and (last-turn -90 135) (time 3 13) (range 200 1000)
(bearing 5 11) (heading 270 200) (speed 50 450))

then (and (turn 45 45))
parent 0 created 0 fixed 1 matched 0 partially-matched 0
action 1 bid 0 active 0 fired 0 mean 500 var 0 strength 500 act 0.5 bias 0

When a rule is fixed, it remains in plan without be replaced through modification during
mutation or creep. Thefixed designation only has significance when running samuel.

If an atom in a rule covers the entire range of a condition or action, then the atom does not
have to be expressed in the rule. For example, in Rule 2, all of conditions are implicitly general
except for the "last-turn" condition:

Rule 2 if (and (last-turn -90 135))
then (and (turn 45 45))
parent 0 created 0 fixed 1 matched 0 partially-matched 0
action 1 bid 0 active 0 fired 0 mean 500 var 0 strength 500 act 0.5 bias 0

The following rule expresses a random action for all sensor conditions:

Rule 3 if (and)
then (and)
parent 0 created 0 fixed I matched 0 partially-matched 0
action I bid 0 active 0 fired 0 mean 500 var 0 strength 500 act 0.5 bias 0

Rule 3 is a maximally general rule. Notice that this is the same as the rule in params.rand in
the Jdemo directory. This rule does not have to be explicitly included in the init file when
running SAMUEL. Setting the init parameter to 1 in a params file ensures that SAMUEL uses
both a maximally general rule and the rules from the init file.
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APPENDIX D: FILES, FUNCTIONS, AND PROCEDURES

Appendix D gives implementation details of the SAMUEL system by file. The
subappendices organize similar files into groups for easy reference. Appendix DI lists files
predominantly containing data structures. Most of the data structures for SAMUEL are in the .h
files. For example, the complete definition of the PLAN data structure is in the define.h file; the
complete definition of the RULE data structure is in the common.h file. Appendix D2 lists two
driver fies: genesis.c, the main driver for the SAMUEL system, and run-plan.c, a driver that
perrts the CPS to be run independently of the GA. Appendix D2 also lists the restart procedure
in restart.c used for restart a SAMUEL run using a checkpoint file. Appendix D3 reviews the files
making up the CPS module: the attributesc and the cps.c files. Appendix C4 reviews the
numerous files making up GA module: cluster.c, creep.c, cross.c, delete.c, eval.c, evaluate.c.
generalize.c, generate.c, init.c, measurexc, merge.c, mutate.c, ops.c, parallel.c, reset.c,
select.c, and specialize.c. Appendix D5 describes the files of the EM world model: em.c and
history.c. The em.c file illustrates many of the procedures and functions that must be defined
for the CPS interface. Appendix D6 lists fies containing utilities. Some of these utilities are
used by or.l on,. of the three modules. For example, the CPS uses the utilities in atom.c; the GA
uses the utilities found in best.c. Appendix D7 lists the shell scripts included with this
distribution. Appendix D8 lists the program input files.
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APPENDIX DI: DATA STRUCTURE FILES

comrnmon.h

The comrnmon.h file contains data structures, constants, and macros common to the CPS,
GA, and EM modules. The file contains the following constants pertaining to: (1) the pseudo-
random generator, (2) upper bounds limits on arrays used in the file's type definitions, and (3)
case statement descriptors. Type definitions for structures include PARAMTABLE, ATOM.
RULE, ATTRIBUTE, and HISTORY, as well as pointers to these structures. Macros include: (1)
pseudo random generator (i.e., RANDOM(SEED), uniformly random over [0, 1), IRAND(SEEr,
LOW, HIGH), uniformly random over an integer interval, and URAND(SEED, LOW, HIGH),
uniformly random over a real interval), (2) comparative operations (i.e., MAX, MIN) and (3) the
ABS operation. File cornmon.h includes the file sets.h.

cps.h and cps-extern.h

The cps.h file an,- its comparable external file cpsextern.h contain the definitions of
constants and the declaration variables used by the CPS. The cps.h file contains the definition of
the upper bound co-istants SETSPERCONDITION and SETSIZE, used in the declaration of
the match set arrays Matchset[] and MS[]. File cps.h sets default values for the variables
associated with the input parameters of the paramns file. File cps.h also defines array
PARAMTABLE cpsparamns[] which sets up the correspondence between input parameters and
several CPS variables. This correspondence is also documented in the params.def file. File
cps.h includes common.h.

define.h

The define.h file defines constants and declares type structures for the GA. In particular,
the file defines constants indicating the maximums for the number of ancestors saved in the
history arrays (MAXANCESTORS), the population size (MAXPOPSIZE), and the number of
operators (MAXOPERATORS). The file defines mnemonics for each of the operators (NOOP,
MU, CROSS, SPEC, GEN, CREEP, DEL, and MRG), as well as the default strength of newly
generated rules, DEFAULTSTRENGTH.

The define.h file gives the type definition of a PLAN. In addition, define.h includes a
output TRACE macro that prints out a string to standard output and flushes the buffer. File
define.h includes common.h.

elogdefs.h

The elogdefs.h fiie contains definitions for the Mach Uniform System elog library
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genesis.h and extern.h

The genesis.h and its comparable external file extern.h file declare variables used by the
GA. These include: loop counters (Experiment, Gen, Trials), performance statistics
(Converged, Offline, Offsum, Online, Onsum, Stdev, Totbest, Totoffline, and Totonline),
performance save values (Ave current value, Best, Bestindividual, Bestcurrentvalue, and
Worstcurrentvalue), variables saving initial values (Initseed and Irules), GA state variables
(Baseline, Bestnext, Creep_next, Currentpop, Currentsave, Munext, and Nextid), and
execution flags (Doneflag).

The genesis.h file also declares arrays and variables relating to operators:
Olist[MAXOPERATORS][MAXPOPSIZE], the current offspring list,
Onext[MAXOPERATORS], the current offspring count, Oprob[MAXOPERATORS], the
initial operator probabilities, V[MAXOPERATORS], the current operator probabilities, and
op_pcnt[MAXOPERATORS], the actual frequencies of operator application.

The genesis.h file sets the default values for the variables associated with the input
parameters of the params file. In addition, the file defines array PARAMTABLE gaparams[I
which sets up the correspondenc- between the input parameters and several GA variables. This
correspondence is also documented in the parans.def file.

File genesis.h includes define.h and the standard math.h and stdio.h files. File genesis.c
includes file genesis.h.

sets.h

The sets.h file include the type definitions of unsigned int SET-ELEMENT and its pointer.
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APPENDIX D2: MAIN PROGRAM DRIVERS

run-plan.c

The run-plan.c file contains a version of procedure main() that runs EM without the GA.
This main program first initializes the the sensor and control attributes by calling
getattributes0. Next, maino calls get.params(cpsparams) and getparams(envparams)
to initialize the CPS and EM parameters, respectively. If a a history of the plans is being
maintained (i.e., the Historyflag is set by initializing hist in the params file to be 1), then main
calls getmemory to allocate memory for HISTORY structures. Enough memory is allocated to
save rule information for each call int evaI(PLAN *p) makes to cpso. The driver reads in a
rules file. (The user can change the default name rules by setting the rulefile parameter in the
params file.) The driver then initializes the CPS by calling init cps(unsigned int seed, int n)
and the environment by calling inzt env(unsigned int seed). Finally, main() calls cps0 to run
EM.

genesis.c

The genesis.c file contains the main program for SAMUEL. The procedure maino
initializes the GA by calling initga0. If the Logflag is set, main() writes out the execution start
time. If Restartflag is set, main() calls restart() to read in a previously saved state.

The main program then enters the experiments program loop. Nested within the
experiments loop is the generations loop. Each generation, maino calls generate until Doneflag
is set. After running an experiment, main() does the following: (1) accumulates performance
measures, (by adding the current Online, Offline, and Best values into Totonline, Totoffline,
and Totbest totals, respectively), (2) increments the counter Experiment, and (3) clears the
generation counter Gen and Doneflag. The experiments loop ends when the counter
Experiment is equal to the limit Nexperiments.

After exiting the experiments loop, maino computes the average online, offline, and best
performances for the experiments. These results are written to the log file if Logflag is set.

restart.c

The restart.c file contains procedure restarto. If the Restartflag is set (the restart
paranieter in the params file is 1), then maino (in genesis.c) calls this procedure for restarting
SAMUEL using state information stored in a checkpoint file (by default called save).
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APPENDIX D3: CPS FILES

attributes.c

The attributes.c file contains the get attributeso procedure. This procedure sets up data
structures for sensors and controllers, indicating the ranges, the granularity, and the type of
sensor or controller.

cps.c

File cps.c contains most of the procedures of the CPS.

init-cps(unsigned int seed, int n)

The int eval(PLAN *p) function (in eval.c) calls init cps(unsigned int seed, int n) before
calling the major procedure cpso. Initialization includes clearing the Cycle, Episode, and Step
counters, setting the Ave-Reward variable to zero, and initializing the CPS random number
generator seed, Cps seed. Procedure init-cps(unsigned int seed, int n) also initializes
variables relating to the set of active rules for each of the control actions (i.e., Activesize[sn],
Firing[sn], Fired[sn], Firedsize[sn], Fireingsize[sn], and Mark[sn], where sn is the sensor
number). Finally, the initialization procedure calls compilerules0 (in rules.c) which organizes
the conditions of rules into a tree structure to facilitate the matching process.

recordsensor(int i, int ptr.type, void *ptr)

The recordsensor(int i, int ptr type, void *ptr) procedure maps a string, integer, or a
double precision real sensor value into an integer approximation. The i argument is the sensor
index; the ptr type argument indicates whether the sensor value is a string (ptrtype = STRING
= 1), an integer (ptr type = INT = 2), or double precision real (ptrtype = DOUBLE = 4), and
ptr is a pointer to the sensor value. The procedure maps sensor values into both a discrete
valued approximation of the sensor (stored in Sensor[i]) and an index corresponding to that
approximation (Index[i]). The recordsensor(int i, int ptr type, void *ptr) procedure first
computes Index[i]); from this index the procedure then computes Sensor[i].

cps()
The cpso procedure is the main execution loop for the CPS. After opening output files for

traces (execution trace and rule trace), initializing the payoff variable to zero, and initializing the
rule history data structures, cps0 executes an episode loop lasting for Nepisodes, or for Ncycles,
whichever comes first. These limits are compared to the Episode and Cycle counters,
respectively. A cycle corresponds to a decision step within an episode. However, the Cycle
counter is not reinitialized between episodes as is the decision Step counter. Thus, the main
loop in cps0 may curtail the number of episodes (to be less than Nepisodes) if the episodes tend
to last for too many steps.
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The decision loop is nested inside the episode loop. For each decision step. cps( calls
several functions. At the top of the loop cps( calls read sensors0 (in em.c) to obtain sensor
values in the world model. Next, cps0 calls findmatchesO to determine which rules have
conditions that match sensor readings. For each control action, cps( calls resolveconflicts(int
action) followed by set action(int action, int op). The resolve._conflicts(int action) function
selects an action-value among equally matching rules; setaction(int action, int op) (in em.c)
converts an action-value to one understood by the controller in the environment. After selecting
an action-value, cpso calls take..actionO to actually carry out the control action in the
environment. To get the critic's evaluation of the decision step (which is null until the end of the
episode), cpso calls function double get rewardo and sets the result to the CPS variable
Reward. Finally, cpso calls update strengthso and update environmentO to modify the rule
strengths and update world model, respectively.

After leaving the decision loop, cpso increments payoff by Reward, thus maintaining a
sum of the payoffs over the current set of episodes.

update strengths0

For each control action ca, the update strengthso: (1) saves the current set of active rules
by writing Firing[ca] to Fired[ca], and (2) reinitializes Firing[ca] and the counter
Firingsize[ca]. Finally, update strengths0 calls psp0 to adjust rule strengths using the Profit
Sharing Plan.
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APPENDIX D4: GA FILES

cluster.c

The cluster.c file contains the cluster(PLAN *p) procedure. After calling eval(PLAN *p)
to evaluate plan and then calling specialize() and generalize() to modify a plan, evaluate() (in
eval.c) calls clustero. If Clusterflag is set, cluster(PLAN *p) arranges rules together based on
firing sequence using the best episodes in the last evaluation of the plan; otherwise, no clustering
is performed. The History structure stores information on the last evaluation of the plan. Even
with Clusterflag set, clustering only occurs if the History.payoff[best plan] is greatei than or
equal to Good_payoff. (Good.payoff is by default 1000.0; a user can specify a value for
Goodpayoff through the goodpayoff parameter in the parars file.) Clusters of rules are
randomly assigned to the offspring. Stochastic selection from an exponential distribution having
a mean Clusterrate determines which offspring receives a cluster. All rules, whether fired or
not, are assigned to one of the offspring. The subsequent crossover operation varies depending
on whether or not rules have been clustered.

creep.c

The creep.c file contains a procedure and a related function: creepo and char
creepplan(PLAN *pl).

The CREEPLIST[plan index] (the same as the CREEP vector of the operator adjustment
list Olist[MAXOPERATORS][MAXPOPSIZE]) holds the list of all plans requiring the
application of the creep operator. The CREEPMAX (the same as the CREEP dimension of
Onext[MAX OPERATORS]) holds a count of the number of offspring requiring the application
of the operator.

The creep() procedure calls char creep_plan(PLAN *pl) in an iterative loop for all plans
in the CREEPLIST. Function char creep_plan(PLAN *pl) attempts to perform the creep
operation on a plan pl and returns 1 or 0 depending the success of the operation. If char
creepplan(PLAN *pl) has changed the plan (i.e., changed is set), then creep() calls
boostoprob(PLAN *p, int op) (in ops.c) to increase the creep operator probability of that plan
(assuming Op updaterate is greater than zero). At the bottom of the loop, creepo stores the
percent usage of the creep operator in the population in the oppcnt[MAXOPERATORS] array.
Outside of the loop, if the Boost optrace flag is set (via setting the boosttrace parameter in
the params file), a trace statement reports whether or not the plan was "creeped."

Function char creepplan(PLAN *pl) applies the creep operator to both the conditions
and actions of rules. The Creepnext counter saves the current position in the plan where the
operator is being applied. The function updates Creep next using stochastic selection from an
exponential distribution having a mean of 1/Creeprate. After testing to make sure that a rule is
not fixed, char creep plan(PLAN *pl) calls copy_rule(RULE *r, RULE *q) (in rules.c) to
copy the current rule into a temporary rule structure. The function char creep plan(PLAN *pl)
applies the creep operator to a condition or an action part of the rule by calling
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creepatom(ATTRIBUTE *attribute, ATOM *atom) (in atoms~c). If the function modifies a
rule to one not already in the plan, char creep_plan(PLAN *p1) calls copyrule(RULE *r,
RULE *q) to copy the rule in the temporary rule structure back to the gene.

cross.c

The cross.c file contains a procedure and a related function: crossover() and int
crossover_plans(PLAN *pl, PLAN *p2).

The CLIST[plan index] (the same as the CROSS vector of the operator adjustment list
Olist[MAX_OPERATORS][MAX_POPSIZE]) holds the list of all plans requiring the application
of the crossover operator. The CMAX (the same as the CROSS dimension of
Onext[MAX OPERATORS]) holds a count of the number of offspring requiring the application
of the operator.

The crossover() procedure calls int crossoverplan(PLAN *pl, PLAN *p2) in an iterative
loop, passing to the function each time a pair of plans from the CLIST. Function int
crossover.plan(PLAN *pl, PLAN *p2) performs uniform crossover of the parent plans on rule
boundaries. The function returns the value 0 through 3, depending on which parent(s)
contributed to making children: if neither parent contributed, then the returned value is 0; if only
the first parent contributed, then the returned value is 1; if the second parent contributed, then the
returned value is 2; if both parents contributed, then the returned value is 3. The crossover()
procedure then calls boostif._changed(int changed, int mom, int dad, int opcode) (in ops.c)
which in turn calls boostoprob(PLAN *p, int op) (also in ops.c) to increase the crossover
operator probability of those plans contributing offspring (assuming Op update_rate is greater
than zero). (Procedure boost ifchanged(int changed, int mom, int dad, int opcode) also
stores the percent usage of the crossover operator in the population in the
op pcnt[MAX OPERATORS] array.) At the bottom of the loop, crossovero computes
Converged based on the average percentage of duplicate rules in the plans.

Function int crossover plans(PLAN *pl, PLAN *p2) goes through several steps to
perform uniform crossover. In order to sense later on whether or not there is a new offspring, the
function resets the flags changed, mornchanged, and dad changed. Next, the function marks
the "status" field of the rules of each parent to indicate whether or not a rule is the same in both
parent plans (i.e., a duplicate). Before proceeding with crossover, the function makes sure that
one parent does not subsume another. If one does subsume another, the function returns without
performing crossover. After computing the average percentage of duplicate rules for a pair of
plans, the actual crossover operation proceeds.

The crossover operation is done in three steps. First, the function int
crossoverplans(PLAN *pl, PLAN *p2) copies all of the duplicate rules into both offspring.
Second, the function copies rules from parent plans to the offspring plans based on the rule
assignments determined in cluster(PLAN *p) (called previously from evaluateo). When
Clusterflag is set, rules that have fired are preassigned to one of the offspring before calling
crossovero. Third, the function randomly assigns unassigned rules to the offspring. A rule is
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unassigned when: (1) rule clustering is off, or (2) rule clustering is on, but the rule remains
unassigned since it did not fire.

If the Boost op trace is set, the function writes an output trace indicating which plans
created new offspring. After assigning rules to the offspring, iot crossover plans(PLAN *pI,
PLAN *p2) overwrites the parent plans with the the offspring plans. Before returning control to
crossovero, int crossoverplans(PLAN *pl. PLAN *p2) uses the mom-changed and
dad-changed flags to encode thke returned changed value.

delete.c

The delete.c file contains a procedure and a related function: deleteO and int
delete-rues(RULE *rule, jot length).

The DELLISTI~plan index] (the same as the DEL vector of the operator adjustment list
Olist[MAX_-OPERATORS][MAXPOPSIZE]) holds the list of all plans requiring the application
of the delete operator. The DELMAX (the same as the DEL dimension of
OnextilMAX_-OPERATORS]) holds a count of the number of offspring requiring the application
of the operator.

The deleteO procedure calls int delete -rules(RULE *rule, int length) in an iterative loop
for all plans in the DELLIST. Function jot delete -rules(RULE *rule, int length) goes through
all of the rules in a plan, testing whether or not to apply the delete operator. When done, the
function returns the remaining number of rules in the plan. If jot delete -rules(RULE *rule, jot
length) has reduced the number of rules in the plan, then deleteo calls boost -oprob(PLAN *p,
jot op) (in ops.c) to increase the delete operator probability of that plan (assumirng
Op update -rate is greater than zero). At the bottom of the loop, deleteo stores the percent
usage of the delete operator in the population in the op pcnt[MAX_OPERATORS] array, and
saves the new length of the plan in the plan's length field. If the Boost -op_trace flag is set (via
setting the boost trace parameter in the params file), a trace statement reports whether or not
rules were deleted from the current plan.

Function iot delete-rules(RULE *rule, lot length) examines for all action parts of the
rules, all pairs of rules in the plan to see whether or not a rule can be deleted. Each rule's
strength is tested against a threshold strength (stored in variable threshold) which is the
maximum of 500 or 1 10 percent of one of the other rules' strength. If a rule's stength is greater
than threshold, then the stronger flag is set to indicate that the rule exceeds the threshold. If the
stronger rule also subsumes the other rule (tested by calling subsumed(RULE *r, RULE *q) (in
rules.c)) and the rule is not fixed, then the function sets the subsumed rule's status to zero. A
zero status marks the rule for deletion. Function iot delete 7rules(RULE *rule, int length) also
deletes non-fixed rules having low activity. If a rule's activity is less than 0,01, a rule's status is
set to zero. Rules having a non-zero status are copied back sequentially into the plan using
copy-rule(RULE *r, RULE *q).
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eval.c

File eval.c contains the int eval(PLAN *p) function. The int eval(PLAN *p) function first
translates the genetic structure of the passed plan (RULE *gene field in PLAN) into the rules
needed by the CPS (RULE). Next, int eval(PLAN *p) initializes the following before calling the
CPS: (1) the pseudo-random generator seed, (2) the CPS by calling init cps(unsigned int seed,
int n), and (3) the EM environment by calling initenv(unassigned in seed).

Function int eval(PLAN *p) then calls cpso to obtain the plan's average payoff per
episode. The function stores one tenth of this average payoff to ti-e plan's "value" field (value
associated property). The difference between the average payoff and Baseline is stored in the
plan's "fitness" field (fitness associated property). To save the current set of best plans (in
Bestset) to a file, the function calls savebestyplan(PLAN *p). Finally, int eval(PLAN *p)
performs the inverse translation of copying the plan's rules (now modified in rule strength) back
into a genetic structure used by the GA.

evaluate.c

The evaluate.c file contains the evaluateo procedure. Procedure ev!Uiate() irst stores the
generation generation and the trial associated with each pian into the plan's "gen" and "trial"
fields. For each member of the population, evaluateo calls: (1) eval(PLAN *p), (2)
specialize(int i), (3) generalize(int i), and (4) cluster(PLAN *p). If the US compilation flag is
set, evaluateo executes alternative code for performing parallel processing on the Butterfly.

generalize.c

The generalize.c file contains a procedure and a related function: generalize(int i) and int
generalize_plan (RULE *rule, int length).

The GENLIST[plan index] (the same as the GEN vector of the operator adjustment list
Olist[MAXOPERATORS][MAXPOPSIZE]) holds the list of all plans requiring the application
of the generalize operator. The GENMAX (the same as the DEL dimension of
Onext[MAXOPERATORS]) holds a count of the number of offspring requiring the application
of the operator.

Procedure evaluateo calls generalize(int i) within an iterative loop over population plans,
passing the plan's index each time. This differs from the crossover() c. mutate() procedures,
where the iterative loop over plans is in the operator procedure itself. As a result, generalize(int
i) first needs to find the plan's comparable GENLIST index given the plan's population index.
The procedure saves the current number of rules in the plan (in oldlength) before calling
function generalizeplan(RULE *rule, int length) to perform the actual generalize operation.
This function returns the resulting number of rules in the plan, and generalize(int i) stores this
number in newlength. At the bottom of the loop, if there is a change in the plan's length,
generalize(int i) stores the percent usage of the generalize operator in the population in the
oppcnt[MAXOPERATORS] array, and then saves newlength in the plan's length field. If the
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Boostop_trace flag is set (via setting the boosttrace parameter in the params file), a trace
statement reports whether or not rules were generalized in the current plan.

Function int generalize-plan(RULE *rule, int length) examines the episodes associated
with a plan. Starting with die first episode as a basis of comparison, the function performs a
linear search for an episode that has a higher payoff at least as high as Good.payoff (set via the
the good_payoff parameter in params). If the search is successful, the function attempts to
generalize rules in the episode. This episode then becomes the new basis of comparison in
finding an episode having an even higher payoff.

When int generalize(RULE *rule, int length) finds a better performing episode, the
function tests each rule in the episode to see if it fired due to a partial match. If so, the function
copies the fired rule into a new rule structure, and then examines the conditions of the clone rule
to determine which ones need generalizing. If a condition does not match the sensor value
experienced when the rule fired (recorded in the History.sensors[decision step][condition
index]), then the function generalizes the condition atom of the clone rule by calling
generalizeatom( *attr, ATTRIBUTE *atom, unsigned int value).

After generalizing a rule, int generalize(RULE *rule, int length) initializes the generalized
rule, indicating the rule's parent, creating time, and other associated properties. If the new rule
is unique, then it is added to the plan.

generate.c

The generate.c file contains the generate() procedure. The generateo procedure is the
main program loop for the GA. The main program, main(int argc, char *argv[]), calls
generateo. For the first generation, Gen = 0, generateo calls reset gao to initialize the
population and select_opso to select the GA operators for each plan.

The procedure then calls evaluateo to obtain performance estimates of the initial plans,
bypassing the generation of new plans using GA operators. After evaluating plans, the procedure
performs end-of-loop tasks: (1) stores intermediate results by calling measureo; (2) sets the
Doneflag when either the trial counter exceeds the maximum trials (Trials >= Maxtrials) or the
generations counter exceeds the maximum generations (Gen >= Maxgens); (3) prints out the
best performing plans by calling printbesto; (4) increments the generations counter, Gen; (5)
saves the current state in a savefile by calling save stateo, and (6) advances the population
pointers for the next generation by setting Old to New. The procedure then returns control to
mairi(int argc, char *argv[]).

When main(int argc, char *argvl) calls generate() in subsequent generations, generate()
starts by creating a new population of plans. As a first step, generateo calls selecto to make
copies of selected plans. The select opso then selects the operators each plan will use in
creating new population members. To create new plans from these copies by applying the
various operators generate() calls crossovero, deleteo, mutateo, creepo, and mergeo. Each
of these operator procedures checks the Olist[operator index][entry number] array to locate
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those plans applying the operator in creating new offspring plans. The generate() procedure
calls update oprobso to adjust the operator probabilities. (Procedure update_oprobs0 only
creates new plans if the operator update mechanism is on.)

Having created new plans, the generate() procedure once again calls evaluateo. The cycle
repeats until main(int argc, char *argv[]) no longer calls generate() due to Doneflag being set.

init.c

The iniLc file contains the init-gao procedure. The initgao procedure first resets the
Experiment counter and the Doneflag. Next, the procedure reads in the attributes file by
calling get attributeso and the parameter file by calling getparams(PARAMTABLE
*partab) for each type of parameter (i.e., CPS parameters, environmental parameters, and GA

parameters).

After reading in file inputs, init-gao sets up several dynamic arrays. If the history flag
History flag is set, then initgao allocates memory for the history structure The init gao
procedure also allocates memory for the New and Old population arrays and their gene
structures and for the array of best plans (Bestset) and their gene structures. After init ga0
initializes memory for any initial rules, the procedure reads these rules into array Initset.

measure.c

The measure.c file contains the measure() procedure. The measure() procedure records
several statistics of a population's performance including: Bestcurrent value,
Bestindividual, Worst current value, Ave currentvalue, Best, Onsun) (to compute
Online), Offsum (to compute Offline), maxlength, minlength, avelength, Stdev (of the
average current value), and Baseline. Variables maxlength, minlength and avelength are
internal to measureo; the remaining variables are declared in genesis.h.

merge.c

The merge.c file contains a procedure and a related function: merge() and int
merge rulesfrom_plan(PLAN *p, int length).

The MRGLIST[plan index] (the same as the MRG vector of the operator adjustment list
Olist[MAXOPERATORSI[MAX_POPSIZE]) holds the list of all plans requiring the application
of the merge operator. The MRGMAX (the same as the MRG dimension of
Onext[MAX OPERATORS]) holds a count of the number of offspring requiring the application
of the operator.

The mergeo procedure calls int merge rules from plan(PLAN *p, int length) in an
iterative loop for all plans in the MRGLIST. The function attempts to merge rules in a plan to
form new rules for the plan. Function int mergerules from plan(PLAN *p, int length)
returns the number of rules in the resulting plan. If there are more rules after performing merge,

then mergeo calls boost oprob(PLAN *p, int op) (in ops.c) to increase the merge operator
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probability of that plan (assuming Opupdaterate is greater than zero). At the bottom of the
loop, mergeo stores the percent usage of the merge operator in the population in the
oppcnt[MAXOPERATORS] array. At the bottom of the loop, if the Boost optrace flag is
set (via setting the boost trace parameter in the params file), a trace statement reports whether
or not the plan generated new rules using merge.

In a pairwise _omparison of all rules in a plan, function int
mergerules fromplan(PLAN *p, int length) calls sameact(RULE *q, RULE *r) to see if
two rules have the same action-values. If so, then the function calls rule union(RULE *r,
RULE *q, RULE *s) to create a new rule by forming the union of the two rules' conditions. The
int mergerules_from_plan(PLAN *p, int length) rejects this new rule if (1) its conditions
intersect with some other rule in the plan (determined by calling condintersect(RULE *q,
RULE *r)) and (2) its action-values differ from this other rule. Otherwise, the function updates
the rule index counter for the plan, initializes the rules' parent and creation time associated
properties, and writes this new rule into the plan (using copy rule(RULE *r, RULE *q) in
rules.c).

mutate.c

The mutate.c file contains a procedure and a related function: mutateo and int
mutate-plan(PLAN *p). The structure of file mutate.c is the same as creep.c.

The MULIST[plan index] (the same as the MU vector of the operator adjustment list
Olist[MAXOPERATORS][MAX_POPSIZE]) holds the list of all plans requiring the application
of the mutate operator. The MUMAX (the same as the MU dimension of
Onext[MAXOPERATORS]) holds a count of the number of offspring requiring the application
of the operator.

The mutate() procedure calls char mutateplan(PLAN *pl) in an iterative loop for all
plans in the MULIST. Function char mutateplan(PLAN *pl) attempts to perform the mutate
operation on a plan pl and returns 1 or 0 depending on the success of the operation. If char
mutateplan(PLAN *pl) has changed the plan (i.e., changed is set), then mutate() calls
boost oprob(PLAN *p, int op) (in ops.c) to increase the mutate operator probability of that plan
(assuming Opupdate rate is greater than zero). At the bottom of the loop, mutate() stores the
percent usage of the mutate operator in the population in the oppcnt[MAX_OPERATORS]
array. Outside of the loop, if the Boost op trace flag is set (via setting the boosttrace
parameter in the params file), a trace statement reports whether or not the plan was mutated.

Function char mutate_plan(PLAN *pl) applies the mutate operator to both the conditions
and actions of rules. The Mu next counter saves the current position in the plan where the
operator is being applied. The function updates Mu next using stochastic selection from an
exponential distribution having a mean of 1/Murate. After testing to make sure that a rule is
not fixed, char mutate-plan(PLAN *pl) calls copyrule(RULE *r, RULE *q) (in rules.c) to
copy the current rule into a temporary rule structure. The function char mutate plan(PLAN
*pl) applies the actual mutate operation on a condition or an action part of the rule by calling
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mutateatom(ATTRIBUTE *attribute, ATOM *atom) (in atoms.c). If the resulting mutate
operation results in a rule not already in the plan, char mutate_plan(PLAN *pl) calls
copy rule(RULE *r, RULE *q) to copy the rule in the temporary rule structure back to the gene.

ops.c
The ops.c file contains procedures involving a plan's operator probability vector.

select opsO

Based on the plan's operator probability vector, a plan selects the operators to be used in
creating offspring plans.

Procedure select-opso first initializes three arrays. The Onextloperator index] array
stores the number of plans using an operator, the V[operator index] array stores the average
probability of applying an operator over plans, and the oppcnt [operator index] array stores the
actual percent usage of the operatcr. 77,!,:electt.pO pro ,.dure defines values for mne tirst two
arrays; each operator procedure computes oppcnt[operator index] after applying the operator.

For each member of the population, select op( selects a set of operators. In an iterative
loop over operator indices, the function randomly selects whether or not to include the operator
in the plan's operator set based on the operator's probability stored in the plan's operator
probability vector. If a plan uses an operator, the plan's index is stored in the 2-dimensional
array Olist[operator index] [Onext[operator index]].

boost oprob(PLAN *p, int op)

If one of the GA operator procedures (e.g., mutate) successfully makes a change in a plan.
then it calls boost oprob(PLAN *p, int op). If Opupdaterate is greater than zero, then
boostoprob(PLAN *p, int op) increments the probability of op in plan p by
Opupdate_rare /(1 - Opupdaterate).

updateoprobs0

Every generation after applying the genetic operators, if Opupdaterate is greater than
zero, generate() calls update oprobso to decay all of the operator probabilities in all of the
plans by 1 - Opupdate_rate.

boost if changed(int changed, int mom, int dad, int opcode)

The crossover procedure calls boost if changed(int changed, int mom, int dad, int
opcode) if the crossover operation has created offspring plans that are different from their
parents. In turn, boostifchanged(int changed, int mom, int dad, int opcode) calls
boost oprob(PLAN *p, int op) to affect operator probability changes in plans contributing new
offspring.

parallel.c

The parallel.c file contains the int process in_parallel(int dummy, int i) function.
Procedure evaluate() (in evaluate.c) calls this function (via Uniform System call GenOnlD
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when the user compiles SAMUEL for the Butterfly's Mach Uniform System. This function
permits population members to be evaluated in parallel.

reset.c

The reset.c file contains the resetga0 procedure. This procedure updates GA variable.
between experiments.

select.c

The select.c file contains the select() procedure. The generateo procedure calls select()
after calling evaluate( and measure(. The select() procedure first computes the fitness of each
plan in the population. When maximizing fitness (i.e., Maxflag is set via the max flag in the
params file), a plan's fitness is non-zero if the plan's performance is greater than a baseline
performance (i.e., greater than Baseline). In this case, the fitness is the plan's perforr iance valuL
minus Baseline. When minimizing fitness, a plan's fitness is non-zero if the plan's performance
is less than Baseline; thus, fitness is Baseline minus the plan's performance.

Next, select() computes the average fitness. Based on this average, select() determines each
plan's expected number of offspring. A plan's expected number of offspring is a plan's fitness
divided by the average fitness. When all population members have a fitness value of zero, each
plan's fitness is set to one along with the average population fitness.

Using a distribution based on each plan's expected number of offspring, the function
randomly selects the number of offspring each plan contributes to the new generation. This is
called "roulette wheel selection" in the GA literature (Baker, 1987). The "parentl" field of each
new population member holds the index of of the parent plan. To increase the likelihood of
creating new plans when generate() calls crossover() later on, select() randomly shuffles these
parent indices. Finally, by using the parent indices as pointers, selecto copies the contents of old
plans (Old[plan index] to new plans (New[plan index] by calling copy plan(PLAN p, PLAN

*q).

specialize.c

The specialize.c file contains a procedure and a related function: specialize(int i) and int
specialize plan(RULE *rule, int length). The overall structure of the file and its routines is
similar to the structure of generalize.c.

The SPECLIST[plan index] (the same as the SPEC vector of the operator adjustment list
Olist[MAXOPERATORS][MAX POPSIZE]) holds the list of all plans requiring the application
of the specialize operator. The SPECMAX (the same as the SPEC dimension of
Onext[MAXOPERATORS]) holds a couait of the number of offspring requiring the application
of the operator.

Procedure evaluate() calls specialize(int i) within an iterative loop over the population of
plans, passing the plan's index each time. This differs from the crossover() or mutate()
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procedures, where the iterative loop over plans is in the operator procedure itself. As a result,
specialize(int i) first needs to find the plan's comparable SPECLIST index given the plzn's
population index. The procedure saves the current number of rules in the plan (in oldlength)
before calling function specializeplan(RULE *rule, int length) to perform the actual specialize
operation. This function returns the resulting number of rules in the plan and specialize(int i)
stores this number in newlength. At the bottom of the loop, if there is a change in the plan's
length, specialize(int i) stores the percent usage of the specialize operator in the population in
the op_pcnt[MAXOPERATORS] array, and then saves newlength in the plan's length field. If
the Boost_op_trace flag is set (via setting the boosttrace parameter in the params file), a trace
statement reports whether or not rules were specialized in the current plan.

Function int specializeplan(RULE *rule, int length) examines the episodes associated
with a plan. Starting with the first episode as a basis of comparison, the function performs a
linear search for an episode that has a higher payoff at least as high as Good_payoff (set via the
the good_payoff parameter in params). If the search is successful, the function attempts to
specialize rules in the episode. This episode then becomes the new basis of comparison in
finding an episode having an even higher payoff.

When int specialize(RULE *tule, int length) finds a better performing episode, the
function tests each rule in the episode to see if it is a maximally general rule (by alling
general rule(R ULE *rule)). If so, the function copies the fired rule into a new rule struicture.
and then specializes each condition atom to cover the sensor value experienced when the rule
fired (recorded in the History.sensors[decision step][condition index]) by calling
specializeatom( *attr, ATTRIBUTE *atom, unsigned int value, ATTRIBUTE oldatom).

After specializing a rule, ;nt specialize(RULE *rule, int length) initializes the specialized
rule, indicating the rule's parent, creation time, and other associated properties. If the new rule
is unique, then it is added to the plan.
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APPENDIX D5: EM FILES (WORLD MODEL FILES)

enL.c

The em.c file contains the procedures and functions that simulate the EM world model, and
utility functions used in updating the visual display. Procedures essential to the CPS's interface
with the world model are initenv(unsigned int seed), read sensorso, set action(int action,
int op), take actiono, double getrewardo, int end of episodeo, and reset envo. See
Chapter 8 for a discussion on how to implement a world model using these procedures and
functions.

The local variables used in modeling EM are placed at the top of the em.c file. There is no
separate em.h file. File em.c also defines the array PARAM_TABLE env_params[], which sets
up the correspondence between input parameters and EM variables. This correspondence is also
documented in the params.def file.

A few data structures from cps.h are declared external at the top of em.c. These data
structures are not essential to the EM world model; they are used for display output and output to
the log file Detailfile.

initenv(unsigned int seed)

The init env(unsigned int seed) procedure sets up the environmental variables for a fresh
run. In particular, the procedure initializes the pseudo-random number generator seeds emseed
and noiseseed. Procedure initenv(unsigned int seed) also initializes EM internal variables
relating to the payoff of an episode: reward, avereward, and totaireward. The procedure also
initializes state variables such as winrate and successes.

readsensors0

The read sensors0 procedure first updates the world state in terms of the sensor readings
and then records these readings into the Sensor[i] array, where i is the sensor index (by calling
recordsensor(int i, int ptr_type, void *ptr)). In the EM world model, readsensors updates
the graphical display if Drawflag is set. If the Detail is greater than zero, the function writes out
sensor values at one of two levels of detail to Detailfile. (In general, three levels of detail are
available. Levels I and 2 are combined in procedure read sensorso.)

set action(int action, int op)

The set action(int action, int op) procedure transforms an action-value of a rule in cps() to
a form that can be used by the take action0 procedure in em.c. The cpso procedure passes the
action-value of a control and the control's index to setaction(int action, int op) through the
action and op arguments, respectively. The set_actionO procedure has several options for
defining the EM variable turn, depending on the user interface specified through the Control
variable. (The user specifies the Control variable using control parameter in the params file.
See Appendix A3.) If Control specifies the RULES or PAUSE interfaces, setactionlint action,
int op) maps the action argument having the range 10 ,9] into the EM variable turn having the
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range [-4, 4]. The PAUSE interface permits the use- to suspend the simulation. The
RAND MOVE interface randomly selects a turn value over the range [-4, 4]. The USER
interface permits a variety of responses depending upon a user's keyboard input (including
randoma selection). The default response is to decrease turn by 4 until the user enters a
command.

take actiono

In the EM domain, the takeactionO procedure contains the dynamical equations governing
the movements of the plane and missile. The take actiono procedure models the effect of the
turn over a number of time steps maintained in the substeps counter. The simulation of the turn
ends when (1) the missile hits the plane (endflag is set), (2) substeps exceeds the maximum time
limit defined in Tstep, or (3) the missile's speed (in mspeed) falls below the minimum speed
limit (in Mspeedmin). The missile hub die plane if the distance between the missile and plane
is less than Saferadius. If Drawflag is a value from 1 to 4, procedure takeactionO also
displays the missile and plane by calling draw planeo and draw_missile(), respectively. The
view depends on the Drawflag option selected. A user sets variable Drawflag by setting the
draw parameter in the params file. (See Appendix A3.)

double getrewardo

Function double getrewardo returns reward at the end of an episode to calling procedure
cpso. Procedure cpso assigns the returned value to the CPS variable Reward. The reward is
1000 if the plane is not hit; otherwise, the reward is (10)step + substep. The function also
maintains the successes and totalreward counters, and EM's episodes counter. Functiun double
getrewardo also calculates the average reward per episode (avereward) and the percentage of
successes per episode (winrate). If the Drawflag is set, the function updates the display; if the
Detail is greater than zero, the function writes a summary of the episode at one of three levels of
detail to Detailfile.

int end of episodeo

Function int endofepisode0 returns the world model's endflag to the CPS each step of
an episode.

update-environmentO

Generally, update_environmentO implements any background environmental changes
occurring in the environment. In EM world model, the update environmento simply
increments the episode's decision step counter (corresponding to the CPS's Step variable).

reset envO

The resetenv( function performs several "reset" operations: (1) clears state variables
endflag, hit, and substep, (2) reinitializes display variables, and (3) reinitializes states variables
for the plane and missile. Certain plane and missile state variables are reset based on the range
limits specified in the pararns file. For example, reset envo randomly selects an initial value
for bearing over the range Bearlo to Bearhi. After initialization, if Drawflag is set,
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reset env() also calls draw-planeO and draw :nissileO.

history.c

The historyxc file contains the print history(FILE *fp, HISTORY *h) and the
read -history(FILE *fp, HISTORY *h) procedures. The dump env(char *filename) and
restore Tenv(char *fienamne) procedures in em.c call the print history(FILE *fp, HISTORY
*h) and the read -history(FILE *fp, HISTORY *h) procedures, respectively. These lines of
code are currently not being used (and are therefore commented out).



APPENDIX D6: UTILITY FILES AND THEIR PROCEDURES

emfont

The emfont file contains a special font used in the EM world model display. A user can
select the font by setting the draw parameter in the params file to 4. (See Appendix A3.)

atoms.c

The atoms.c file provides several utilities that the CPS uses for processing atoms.

read_atom(ATTRIBUTE *attribute, ATOM *atom, char *s)

Procedure readatom(ATTRIBUTE *attribute, ATOM *atom, char *s) reads each atom
of a rule during the execution of a while loop in read rule FILE *fp, RULE *r) (in rules.c). The
first argument to read atom (ATTRIBUTE *attribute, ATOM *atom, char *s) specifies the
attribute (sensor or control); the second argument points to the condition values, and the last
argument specifies the name of the atom.

print atom(FILE *fp, ATTRIBUTE *attribute, ATOM atom)

Procedure print-rule(FILE *fp, RULE *r) (in rules.c) calls printatom(FILE *fp,
ATTRIBUTE *attribute, ATOM atom) for each condition and action atom of a rule.

matchatom(ATTRIBUTE *attribute, ATOM atom, int value)

Procedure match atom(ATTRIBUTE *attribute, ATOM atom, int Vahue ntch..: tftlc
current sensor value against the lower and upper limits specified in an atom. The first argument
points to the condition atom; the second argument points to the condition values, and the last
argument specifies the current value of a sensor. Procedures findmatches) (in cps.c) calls
match atom(ATrTRIBUTE *attribute, ATOM atom, int value) to generate a match set.
Subsequently, resolve_conflicts(int action) calls the matching procedure while determining the
winning rule in the match set. Procedure subsumed(RULE *r, RULE *q) (in rules.c) also calls
match-atom(ATTRIBUTE *attribute, ATOM atom, int value) while testing to see if atoms in
rules having a PATTERN type of attribute subsume one another. The int generalize_plan(
RULE *rule, int length) function calls matchatom(ATTRIBUTE *attribute, ATOM atom, int
value) during rule generalization.

mutateatom(ATTRIBUTE *attribute, ATOM *atom)

Function char mutate-plan(PLAN *p) (in mutate.c) calls mutate-atom(ATTRIBUTE
*attribute, ATOM *atom) to mutate the condition and action atoms of rules in plans. The first
argument of mutate atom(ATTRIBUTE *attribute, ATOM *atom) points to the specific sensor
or control atom; the second arguments points to the condition or action values. Procedure
mutateatom(ATTRIBUTE *attribute, ATOM *atom) mutates an atom depending on its type:
LINEAR, CYCLIC, STRUCTURED, or PATTERN. In all cases, the function randomly selects
whether to mutate the lower or upper bound of the mutate atom. If Singleact is set,
mutate atom(ATTRIBUTE *attribute, ATOM *atom) mutates the upper bound and then sets
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the lower bound to the same value.

creep atom(ATTRIBUTE *attribute, ATOM *atom)

Procedure char creep_plan(PLAN *p) (in creep.c) calls creep atom(ATTRIBUTE
*attribute, ATOM *atom) to apply creep to both the condition and action atoms of rules in
plans. This procedure is similar to mutateatom(ATTRIBUTE *attribute, ATOM *atom),
except that bounds are modified by incrementing or decrementing the existing values rather than
by substituting new randomly selected values.

make generalatom(ATTRIBUTE *attribute, ATOM *atom)

Procedure make generalatom(ATTRIBUTE *attribute, ATOM *atom) creates a general
atom having bounds that cover the range of the attribute. For LINEAR and CYCLIC atoms, the
value of the lower bound is zero, and the value of the upper bound is the number of attributes
values minus 1. For STRUCTURED and PATTERN atoms, both the upper and lower bounds are
zero. The resetgao procedure calls makegeneral atom(ATTRIBUTE *attribute, ATOM
*atom) to make a generally maximal rule during program initialization if Initflag is less than
two. The read rule(FILE *fp, RULE *r) procedure also calls
make-general atom(ATTRIBUTE *attribute, ATOM *atom) for all conditions and actions of
a rule before reading in condition and action boundary values for the atoms of the rule.

specialize atom(ATTRIBUTE *attr, ATOM *atom, int value, ATOM oldatom)

Function int specializeplan(RULE *rule, int length) (in specialize.c) calls
specializeatom(ATTRIBUTE *attr, ATOM *atom, int value, ATOM oldatom) to specialize
each condition of the rule, i.e., define the bounds for each rule condition, given the current sensor
values. The first argument points to the condition atom being specialized; the second argument
points to the condition values, the third argument specifies the current value of the corresponding
sensor, and the fourth argument is the original atom before applying the specialize operator.
Procedure specialize atom(ATTRIBUTE *attribute, ATOM *atom) specializes an atom
depending on its type: LINEAR, CYCLIC, STRUCTURED, or PATTERN. In all cases, the
procedure determines the upper and lower bounds of the specialized atom by covering the
current sensor reading with upper and lower bounds that significantly reduce the range covered
by the "old atom."

print atom value(ATTRIBUTE *attr, unsigned int value)

The printatom value(ATTRIBUTE *attr, unsigned int value) procedure prints out a
sensor value associated with an atom. If Traceflag is set. procedures int specialize-plan(RULE
*rule, int length) and int generalize_plan(RULE *rule, int length) call

printatomvalue(ATTRIBUTE *attr, unsigned int value).

generalize atom(ATTRIBUTE *attr, ATOM *atom, int value)

Function int generalize_plan(RULE *rule, int length) (in generalize.c) calls
generalizeatom(ATTRIBUTE *attr, ATOM *atom, int value, ATOM oldatom) to generalize
each condition of the rule just enough to cover the current sensor values. The first argument
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points to the condition atom being generalized; the second argument points to the condition
values, and the third argument specifies the current value of the corresponding sensor. Procedure
generalizeatom(ATTRIBUTE *attribute, ATOM *atom) generalizes an atom depending on its
type: LINEAR, CYCLIC, STRUCTURED, or PATTERN. In all cases, the procedure expands the
upper and lower bounds of the atom enough to cover the current sensor reading.

best.c

The best.c file contain utilities used by the GA for saving the best current plan into the
dynamic array Bestset and printing out the Bestset of plans. The file includes the procedures
savebesto, savebest.plan(PLAN *p), and printbesto. Every Best interval generations,
savebest0 clears array Bestset to reinitialize it with the current best plan in the population. The
savebest0 function calls savebest_plan0 to save the current best plan. Function int eval(PLAN
*p) (in file eval.c) also calls savebest.plano after CPS evaluates the plan. Every Graph rate
generations, generateo (the main driver for the GA) calls printbest0 to write out an output file
of the current best plans in the Bestset. These high performing plans are evaluated later on using
longer episodes.

files.c

The files.c file contains functions for opening and closing streams which may or may not be
the standard input/output files.

memory.c

The memory.c file contains versions of malloc for both standard UNIX and the Mach
Uniform System on the Butterfly.

params.c

The params.c file contains utilities for processing the input parameters in the params file.
These procedures include getparams(PARAMTABLE *pt), findparan,(rARAMTABLE
*pt, char *s), and set_param(FILE *fp, PARAMTABLE *pt, int n).

plan.c

The plan.c file contains utilities the GA uses for printing, reading, and copying plans.
These functions include printplan(FILE *fp, PLAN *p), read plan(FILE *fp, PLAN *p),
printcompactplan(FILE *fp, PLAN *p), read compactplan(FILE *fp, PLAN *p), and
copyplan(PLAa *p, PLAN *q). In the "compact" plan representation, the GA only stores
numerical information; e.g., the file does not contain the name- of the sensors and actions, nor
the names of each rule's associated properties. The compact representation is used in storing
plans to "best" files, since these files store a tremendous amount of data. The non-compact read
and print functions represent plans as if-then rules that are easily read by a user.
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rules.c
The rules.c file contains utilities the GA uses for processing rules, including

compilerules( for organizing rules into a structure the CPS can use, copyrule(FILE *fp,
RULE *r), printrule(FILE *fp, RULE *r), and readrule(FILE *fp, RULE *r).

save.c

The save.c file contains utilities that saves the current state of the GA, including a
genealogical trace of the plans at that time. Procedure save state( calls save(char *filename)
periodically if the number of save files, Nsave, is greater than zero and the Save-interval is
specified. (The Saveinterval and the Nsaves variables are initialized through the
save-interval and save parameters in the params file, respectively.) The save(char *filename)
procedure is also called at the end of the run if Lastflag is set. (Lastflag is set through the
lastflag parameter in the params file.) The save(char *filename) writes out the file to Savefile.
(Savefile is specified through the savefile parameter in the params file.) Finally, savestate(
calls geneologyO. If the Geneology flag is set, geneology writes out the current generation's
plans in a compact format to file geneology. (The Geneology flag is specified through parameter
geneology in the params file.) The user should exercise care in setting the Geneology flag;

geneologyO generates a tremendous amount of output.

sets.c

The sets.c file contains the following domain-independent sec manipulation procedures:
init set length(int n) obtains the set length in terms of integers given bit length n;
setto_empty(register SET s), sets elements of the set s to zero; set insert(register int n,
register SET s), inserts integer n into set s; set isnul I(register SET s), tests whether or not set
s is null; setintersect(register SET sI, register SET s2), "ANDs" set sl with set s2 and places
the result in set sl; setunion(register SET sI, register SET s2), "ORs" set sl with set s2 and
places the result in set si; set_assign(register SET sl, register SET s2), writes set s2 to set sl;
setdelete(register int n, register SET s), deletes, if possible, n from set s; setextract(register
int list, register SET s), removes a list of elements from set s, and set to full(register SET s),
pads set s with zeros.
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APPENDIX D7: SHELL SCRIPT UTILITIES

Appendix D6 lists the shell scripts available and the purpose of each. See Chapter 7 for
more information on how to use these scripts.

ch

Script ch permits a user to update a line in the params file.

demo

Script demo file contains a script for running the SAMUEL demo.

avegraph

The avegraph file generates the graph.all and graph.ave files. The graph.all file
summarizes the results over all of the experimental runs; graph.ave file is the experimental
average of graph.all. The avegraph script is used in run-samuel.

getindex

The getindex fie contains a script that filters out the index of the best plan from each
graph file generated in the run-samuel script.

mkgraph

The mkgraph file contains a script filters out the best plan for each epoch, given the
extended evaluations of several plans each epoch (extended evaluations from the retest
program). The mkgraph script is used in run-samuel.

P
The p script executes the UNIX more command taking params as an argument.

run-samuel

Script run-samuel permits a user to run a set of experiments in both "training" and
"testing" mode.

ttest

Script ttest script performs a student t-test between the data points of two summary graph
files generated by run-samuel.
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show

The show script permits a user view one or two graph files on a Sun workstation using the
eview command. This command uses the plot file.

wins

The wins file contains an awk script summarizing the trace file.
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APPENDIX D8: PROGRAM INPUT FILES

attributes
The attributes file lists the attributes of each sensor and control. See Appendix B for qn

explanation of the attributes file.

init

The init file specifies the rules to be placed in the initial plan of SAMUEL if the init
parameter is 1 or 2.

params

The params file contains all of the runtime parameters for SAMUEL. See Appendix A for a
complete listing of these parameters.

rules

The rules file contains rules for the initial population when running SAMUEL without the
GA.
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